MakeItFrom.com
Menu (ESC)

CC767S Brass vs. AWS E80C-B3L

CC767S brass belongs to the copper alloys classification, while AWS E80C-B3L belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is CC767S brass and the bottom bar is AWS E80C-B3L.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 34
19
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 40
73
Tensile Strength: Ultimate (UTS), MPa 430
620
Tensile Strength: Yield (Proof), MPa 150
540

Thermal Properties

Latent Heat of Fusion, J/g 180
260
Melting Completion (Liquidus), °C 840
1460
Melting Onset (Solidus), °C 790
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 110
41
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
7.7
Electrical Conductivity: Equal Weight (Specific), % IACS 36
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 23
4.0
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 2.7
1.8
Embodied Energy, MJ/kg 47
24
Embodied Water, L/kg 330
60

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
110
Resilience: Unit (Modulus of Resilience), kJ/m3 100
760
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 15
22
Strength to Weight: Bending, points 16
21
Thermal Diffusivity, mm2/s 34
11
Thermal Shock Resistance, points 14
18

Alloy Composition

Aluminum (Al), % 0.1 to 0.8
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
2.0 to 2.5
Copper (Cu), % 58 to 64
0 to 0.35
Iron (Fe), % 0 to 0.5
93.5 to 96.5
Lead (Pb), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.5
0.4 to 1.0
Molybdenum (Mo), % 0
0.9 to 1.2
Nickel (Ni), % 0 to 1.0
0 to 0.2
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.2
0.25 to 0.6
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.1
0
Vanadium (V), % 0
0 to 0.030
Zinc (Zn), % 32.8 to 41.9
0
Residuals, % 0
0 to 0.5