MakeItFrom.com
Menu (ESC)

CC767S Brass vs. EN 1.4031 Stainless Steel

CC767S brass belongs to the copper alloys classification, while EN 1.4031 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is CC767S brass and the bottom bar is EN 1.4031 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 34
11 to 13
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 40
76
Tensile Strength: Ultimate (UTS), MPa 430
670 to 900
Tensile Strength: Yield (Proof), MPa 150
390 to 730

Thermal Properties

Latent Heat of Fusion, J/g 180
280
Maximum Temperature: Mechanical, °C 120
770
Melting Completion (Liquidus), °C 840
1440
Melting Onset (Solidus), °C 790
1400
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 110
30
Thermal Expansion, µm/m-K 21
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
3.1
Electrical Conductivity: Equal Weight (Specific), % IACS 36
3.7

Otherwise Unclassified Properties

Base Metal Price, % relative 23
7.0
Density, g/cm3 8.0
7.7
Embodied Carbon, kg CO2/kg material 2.7
1.9
Embodied Energy, MJ/kg 47
27
Embodied Water, L/kg 330
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
77 to 94
Resilience: Unit (Modulus of Resilience), kJ/m3 100
380 to 1360
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 15
24 to 32
Strength to Weight: Bending, points 16
22 to 27
Thermal Diffusivity, mm2/s 34
8.1
Thermal Shock Resistance, points 14
23 to 32

Alloy Composition

Aluminum (Al), % 0.1 to 0.8
0
Carbon (C), % 0
0.36 to 0.42
Chromium (Cr), % 0
12.5 to 14.5
Copper (Cu), % 58 to 64
0
Iron (Fe), % 0 to 0.5
83 to 87.1
Lead (Pb), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.5
0 to 1.0
Nickel (Ni), % 0 to 1.0
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.2
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.1
0
Zinc (Zn), % 32.8 to 41.9
0