MakeItFrom.com
Menu (ESC)

CC767S Brass vs. EN 1.4923 Stainless Steel

CC767S brass belongs to the copper alloys classification, while EN 1.4923 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is CC767S brass and the bottom bar is EN 1.4923 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 34
12 to 21
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 40
76
Tensile Strength: Ultimate (UTS), MPa 430
870 to 980
Tensile Strength: Yield (Proof), MPa 150
470 to 780

Thermal Properties

Latent Heat of Fusion, J/g 180
270
Maximum Temperature: Mechanical, °C 120
740
Melting Completion (Liquidus), °C 840
1450
Melting Onset (Solidus), °C 790
1410
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 110
24
Thermal Expansion, µm/m-K 21
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 36
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 23
8.0
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 2.7
2.9
Embodied Energy, MJ/kg 47
41
Embodied Water, L/kg 330
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
110 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 100
570 to 1580
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 15
31 to 35
Strength to Weight: Bending, points 16
26 to 28
Thermal Diffusivity, mm2/s 34
6.5
Thermal Shock Resistance, points 14
30 to 34

Alloy Composition

Aluminum (Al), % 0.1 to 0.8
0
Carbon (C), % 0
0.18 to 0.24
Chromium (Cr), % 0
11 to 12.5
Copper (Cu), % 58 to 64
0
Iron (Fe), % 0 to 0.5
83.5 to 87.1
Lead (Pb), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.5
0.4 to 0.9
Molybdenum (Mo), % 0
0.8 to 1.2
Nickel (Ni), % 0 to 1.0
0.3 to 0.8
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.2
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.1
0
Vanadium (V), % 0
0.25 to 0.35
Zinc (Zn), % 32.8 to 41.9
0