MakeItFrom.com
Menu (ESC)

CC767S Brass vs. C82500 Copper

Both CC767S brass and C82500 copper are copper alloys. They have 62% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is CC767S brass and the bottom bar is C82500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 34
1.0 to 20
Poisson's Ratio 0.31
0.33
Shear Modulus, GPa 40
45
Tensile Strength: Ultimate (UTS), MPa 430
550 to 1100
Tensile Strength: Yield (Proof), MPa 150
310 to 980

Thermal Properties

Latent Heat of Fusion, J/g 180
240
Maximum Temperature: Mechanical, °C 120
280
Melting Completion (Liquidus), °C 840
980
Melting Onset (Solidus), °C 790
860
Specific Heat Capacity, J/kg-K 390
390
Thermal Conductivity, W/m-K 110
130
Thermal Expansion, µm/m-K 21
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
20
Electrical Conductivity: Equal Weight (Specific), % IACS 36
21

Otherwise Unclassified Properties

Density, g/cm3 8.0
8.8
Embodied Carbon, kg CO2/kg material 2.7
10
Embodied Energy, MJ/kg 47
160
Embodied Water, L/kg 330
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
11 to 94
Resilience: Unit (Modulus of Resilience), kJ/m3 100
400 to 4000
Stiffness to Weight: Axial, points 7.3
7.7
Stiffness to Weight: Bending, points 20
19
Strength to Weight: Axial, points 15
18 to 35
Strength to Weight: Bending, points 16
17 to 27
Thermal Diffusivity, mm2/s 34
38
Thermal Shock Resistance, points 14
19 to 38

Alloy Composition

Aluminum (Al), % 0.1 to 0.8
0 to 0.15
Beryllium (Be), % 0
1.9 to 2.3
Chromium (Cr), % 0
0 to 0.1
Cobalt (Co), % 0
0.15 to 0.7
Copper (Cu), % 58 to 64
95.3 to 97.8
Iron (Fe), % 0 to 0.5
0 to 0.25
Lead (Pb), % 0 to 0.1
0 to 0.020
Manganese (Mn), % 0 to 0.5
0
Nickel (Ni), % 0 to 1.0
0 to 0.2
Silicon (Si), % 0 to 0.2
0.2 to 0.35
Tin (Sn), % 0 to 0.1
0 to 0.1
Titanium (Ti), % 0
0 to 0.12
Zinc (Zn), % 32.8 to 41.9
0 to 0.1
Residuals, % 0
0 to 0.5