MakeItFrom.com
Menu (ESC)

CC767S Brass vs. S21900 Stainless Steel

CC767S brass belongs to the copper alloys classification, while S21900 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is CC767S brass and the bottom bar is S21900 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 86
220
Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 34
50
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 40
78
Tensile Strength: Ultimate (UTS), MPa 430
710
Tensile Strength: Yield (Proof), MPa 150
390

Thermal Properties

Latent Heat of Fusion, J/g 180
290
Maximum Temperature: Mechanical, °C 120
980
Melting Completion (Liquidus), °C 840
1400
Melting Onset (Solidus), °C 790
1350
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 110
14
Thermal Expansion, µm/m-K 21
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 36
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 23
15
Density, g/cm3 8.0
7.7
Embodied Carbon, kg CO2/kg material 2.7
3.0
Embodied Energy, MJ/kg 47
43
Embodied Water, L/kg 330
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
300
Resilience: Unit (Modulus of Resilience), kJ/m3 100
380
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 15
26
Strength to Weight: Bending, points 16
23
Thermal Diffusivity, mm2/s 34
3.8
Thermal Shock Resistance, points 14
15

Alloy Composition

Aluminum (Al), % 0.1 to 0.8
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
19 to 21.5
Copper (Cu), % 58 to 64
0
Iron (Fe), % 0 to 0.5
59.4 to 67.4
Lead (Pb), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.5
8.0 to 10
Nickel (Ni), % 0 to 1.0
5.5 to 7.5
Nitrogen (N), % 0
0.15 to 0.4
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.2
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.1
0
Zinc (Zn), % 32.8 to 41.9
0