MakeItFrom.com
Menu (ESC)

CR003A Copper vs. EN AC-47000 Aluminum

CR003A copper belongs to the copper alloys classification, while EN AC-47000 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is CR003A copper and the bottom bar is EN AC-47000 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
73
Elongation at Break, % 15
1.7
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 43
27
Tensile Strength: Ultimate (UTS), MPa 230
180
Tensile Strength: Yield (Proof), MPa 140
97

Thermal Properties

Latent Heat of Fusion, J/g 210
570
Maximum Temperature: Mechanical, °C 200
170
Melting Completion (Liquidus), °C 1090
590
Melting Onset (Solidus), °C 1040
570
Specific Heat Capacity, J/kg-K 390
900
Thermal Conductivity, W/m-K 380
130
Thermal Expansion, µm/m-K 17
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 100
33
Electrical Conductivity: Equal Weight (Specific), % IACS 100
110

Otherwise Unclassified Properties

Base Metal Price, % relative 31
9.5
Density, g/cm3 9.0
2.6
Embodied Carbon, kg CO2/kg material 2.6
7.7
Embodied Energy, MJ/kg 41
140
Embodied Water, L/kg 310
1040

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 31
2.5
Resilience: Unit (Modulus of Resilience), kJ/m3 83
65
Stiffness to Weight: Axial, points 7.2
16
Stiffness to Weight: Bending, points 18
54
Strength to Weight: Axial, points 7.1
19
Strength to Weight: Bending, points 9.3
27
Thermal Diffusivity, mm2/s 110
55
Thermal Shock Resistance, points 8.1
8.3

Alloy Composition

Aluminum (Al), % 0
82.1 to 89.5
Antimony (Sb), % 0 to 0.00040
0
Arsenic (As), % 0 to 0.00050
0
Bismuth (Bi), % 0 to 0.00020
0
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 99.954 to 100
0 to 1.0
Iron (Fe), % 0 to 0.0010
0 to 0.8
Lead (Pb), % 0 to 0.00050
0 to 0.2
Magnesium (Mg), % 0
0 to 0.35
Manganese (Mn), % 0
0.050 to 0.55
Nickel (Ni), % 0
0 to 0.3
Oxygen (O), % 0 to 0.040
0
Selenium (Se), % 0 to 0.00020
0
Silicon (Si), % 0
10.5 to 13.5
Silver (Ag), % 0 to 0.0025
0
Sulfur (S), % 0 to 0.0015
0
Tellurium (Te), % 0 to 0.00020
0
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.55
Residuals, % 0
0 to 0.25