MakeItFrom.com
Menu (ESC)

CR003A Copper vs. EN AC-51200 Aluminum

CR003A copper belongs to the copper alloys classification, while EN AC-51200 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is CR003A copper and the bottom bar is EN AC-51200 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
67
Elongation at Break, % 15
1.1
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 43
25
Tensile Strength: Ultimate (UTS), MPa 230
220
Tensile Strength: Yield (Proof), MPa 140
150

Thermal Properties

Latent Heat of Fusion, J/g 210
410
Maximum Temperature: Mechanical, °C 200
170
Melting Completion (Liquidus), °C 1090
640
Melting Onset (Solidus), °C 1040
570
Specific Heat Capacity, J/kg-K 390
910
Thermal Conductivity, W/m-K 380
92
Thermal Expansion, µm/m-K 17
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 100
22
Electrical Conductivity: Equal Weight (Specific), % IACS 100
74

Otherwise Unclassified Properties

Base Metal Price, % relative 31
9.5
Density, g/cm3 9.0
2.6
Embodied Carbon, kg CO2/kg material 2.6
9.6
Embodied Energy, MJ/kg 41
150
Embodied Water, L/kg 310
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 31
2.2
Resilience: Unit (Modulus of Resilience), kJ/m3 83
160
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
51
Strength to Weight: Axial, points 7.1
24
Strength to Weight: Bending, points 9.3
31
Thermal Diffusivity, mm2/s 110
39
Thermal Shock Resistance, points 8.1
10

Alloy Composition

Aluminum (Al), % 0
84.5 to 92
Antimony (Sb), % 0 to 0.00040
0
Arsenic (As), % 0 to 0.00050
0
Bismuth (Bi), % 0 to 0.00020
0
Copper (Cu), % 99.954 to 100
0 to 0.1
Iron (Fe), % 0 to 0.0010
0 to 1.0
Lead (Pb), % 0 to 0.00050
0 to 0.1
Magnesium (Mg), % 0
8.0 to 10.5
Manganese (Mn), % 0
0 to 0.55
Nickel (Ni), % 0
0 to 0.1
Oxygen (O), % 0 to 0.040
0
Selenium (Se), % 0 to 0.00020
0
Silicon (Si), % 0
0 to 2.5
Silver (Ag), % 0 to 0.0025
0
Sulfur (S), % 0 to 0.0015
0
Tellurium (Te), % 0 to 0.00020
0
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15