MakeItFrom.com
Menu (ESC)

CR005A Copper vs. 6018 Aluminum

CR005A copper belongs to the copper alloys classification, while 6018 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is CR005A copper and the bottom bar is 6018 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
69
Elongation at Break, % 15
9.0 to 9.1
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 43
26
Tensile Strength: Ultimate (UTS), MPa 230
290 to 300
Tensile Strength: Yield (Proof), MPa 140
220 to 230

Thermal Properties

Latent Heat of Fusion, J/g 210
400
Maximum Temperature: Mechanical, °C 200
160
Melting Completion (Liquidus), °C 1090
640
Melting Onset (Solidus), °C 1040
570
Specific Heat Capacity, J/kg-K 390
890
Thermal Conductivity, W/m-K 380
170
Thermal Expansion, µm/m-K 17
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 100
44
Electrical Conductivity: Equal Weight (Specific), % IACS 100
140

Otherwise Unclassified Properties

Base Metal Price, % relative 31
10
Density, g/cm3 9.0
2.9
Embodied Carbon, kg CO2/kg material 2.6
8.2
Embodied Energy, MJ/kg 41
150
Embodied Water, L/kg 320
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 31
24 to 25
Resilience: Unit (Modulus of Resilience), kJ/m3 83
360 to 380
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 18
48
Strength to Weight: Axial, points 7.1
28 to 29
Strength to Weight: Bending, points 9.3
34 to 35
Thermal Diffusivity, mm2/s 110
65
Thermal Shock Resistance, points 8.1
13

Alloy Composition

Aluminum (Al), % 0
93.1 to 97.8
Bismuth (Bi), % 0
0.4 to 0.7
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 99.9 to 100
0.15 to 0.4
Iron (Fe), % 0
0 to 0.7
Lead (Pb), % 0
0.4 to 1.2
Magnesium (Mg), % 0
0.6 to 1.2
Manganese (Mn), % 0
0.3 to 0.8
Oxygen (O), % 0 to 0.040
0
Silicon (Si), % 0
0.5 to 1.2
Silver (Ag), % 0 to 0.015
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.3
Residuals, % 0
0 to 0.15