MakeItFrom.com
Menu (ESC)

CR005A Copper vs. A384.0 Aluminum

CR005A copper belongs to the copper alloys classification, while A384.0 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is CR005A copper and the bottom bar is A384.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
74
Elongation at Break, % 15
2.5
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 43
28
Tensile Strength: Ultimate (UTS), MPa 230
330
Tensile Strength: Yield (Proof), MPa 140
170

Thermal Properties

Latent Heat of Fusion, J/g 210
550
Maximum Temperature: Mechanical, °C 200
170
Melting Completion (Liquidus), °C 1090
610
Melting Onset (Solidus), °C 1040
510
Specific Heat Capacity, J/kg-K 390
880
Thermal Conductivity, W/m-K 380
96
Thermal Expansion, µm/m-K 17
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 100
23
Electrical Conductivity: Equal Weight (Specific), % IACS 100
73

Otherwise Unclassified Properties

Base Metal Price, % relative 31
11
Density, g/cm3 9.0
2.8
Embodied Carbon, kg CO2/kg material 2.6
7.5
Embodied Energy, MJ/kg 41
140
Embodied Water, L/kg 320
1010

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 31
6.9
Resilience: Unit (Modulus of Resilience), kJ/m3 83
180
Stiffness to Weight: Axial, points 7.2
15
Stiffness to Weight: Bending, points 18
50
Strength to Weight: Axial, points 7.1
32
Strength to Weight: Bending, points 9.3
38
Thermal Diffusivity, mm2/s 110
39
Thermal Shock Resistance, points 8.1
15

Alloy Composition

Aluminum (Al), % 0
79.3 to 86.5
Copper (Cu), % 99.9 to 100
3.0 to 4.5
Iron (Fe), % 0
0 to 1.3
Magnesium (Mg), % 0
0 to 0.1
Manganese (Mn), % 0
0 to 0.5
Nickel (Ni), % 0
0 to 0.5
Oxygen (O), % 0 to 0.040
0
Silicon (Si), % 0
10.5 to 12
Silver (Ag), % 0 to 0.015
0
Tin (Sn), % 0
0 to 0.35
Zinc (Zn), % 0
0 to 1.0
Residuals, % 0
0 to 0.5