MakeItFrom.com
Menu (ESC)

CR006A Copper vs. SAE-AISI 1345 Steel

CR006A copper belongs to the copper alloys classification, while SAE-AISI 1345 steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is CR006A copper and the bottom bar is SAE-AISI 1345 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 15
11 to 23
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 43
72
Tensile Strength: Ultimate (UTS), MPa 230
590 to 730
Tensile Strength: Yield (Proof), MPa 140
330 to 620

Thermal Properties

Latent Heat of Fusion, J/g 210
250
Maximum Temperature: Mechanical, °C 200
400
Melting Completion (Liquidus), °C 1090
1450
Melting Onset (Solidus), °C 1040
1410
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 380
51
Thermal Expansion, µm/m-K 17
12

Otherwise Unclassified Properties

Base Metal Price, % relative 31
1.9
Density, g/cm3 9.0
7.8
Embodied Carbon, kg CO2/kg material 2.6
1.4
Embodied Energy, MJ/kg 41
19
Embodied Water, L/kg 320
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 31
78 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 83
290 to 1040
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 7.1
21 to 26
Strength to Weight: Bending, points 9.3
20 to 23
Thermal Diffusivity, mm2/s 110
14
Thermal Shock Resistance, points 8.1
19 to 23

Alloy Composition

Carbon (C), % 0
0.43 to 0.48
Copper (Cu), % 99.9 to 100
0
Iron (Fe), % 0
97.2 to 97.8
Manganese (Mn), % 0
1.6 to 1.9
Oxygen (O), % 0 to 0.1
0
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0
0.15 to 0.35
Silver (Ag), % 0 to 0.015
0
Sulfur (S), % 0
0 to 0.040