MakeItFrom.com
Menu (ESC)

CR006A Copper vs. C18400 Copper

Both CR006A copper and C18400 copper are copper alloys. They have a very high 98% of their average alloy composition in common. There are 26 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is CR006A copper and the bottom bar is C18400 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
120
Elongation at Break, % 15
13 to 50
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 43
44
Tensile Strength: Ultimate (UTS), MPa 230
270 to 490
Tensile Strength: Yield (Proof), MPa 140
110 to 480

Thermal Properties

Latent Heat of Fusion, J/g 210
210
Maximum Temperature: Mechanical, °C 200
200
Melting Completion (Liquidus), °C 1090
1080
Melting Onset (Solidus), °C 1040
1070
Specific Heat Capacity, J/kg-K 390
390
Thermal Conductivity, W/m-K 380
320
Thermal Expansion, µm/m-K 17
17

Otherwise Unclassified Properties

Base Metal Price, % relative 31
31
Density, g/cm3 9.0
8.9
Embodied Carbon, kg CO2/kg material 2.6
2.6
Embodied Energy, MJ/kg 41
41
Embodied Water, L/kg 320
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 31
63 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 83
54 to 980
Stiffness to Weight: Axial, points 7.2
7.3
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 7.1
8.5 to 15
Strength to Weight: Bending, points 9.3
10 to 16
Thermal Diffusivity, mm2/s 110
94
Thermal Shock Resistance, points 8.1
9.6 to 17

Alloy Composition

Arsenic (As), % 0
0 to 0.0050
Calcium (Ca), % 0
0 to 0.0050
Chromium (Cr), % 0
0.4 to 1.2
Copper (Cu), % 99.9 to 100
97.2 to 99.6
Iron (Fe), % 0
0 to 0.15
Lithium (Li), % 0
0 to 0.050
Oxygen (O), % 0 to 0.1
0
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 0
0 to 0.1
Silver (Ag), % 0 to 0.015
0
Zinc (Zn), % 0
0 to 0.7
Residuals, % 0
0 to 0.5