MakeItFrom.com
Menu (ESC)

CR006A Copper vs. C72900 Copper-nickel

Both CR006A copper and C72900 copper-nickel are copper alloys. They have 76% of their average alloy composition in common. There are 26 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is CR006A copper and the bottom bar is C72900 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
120
Elongation at Break, % 15
6.0 to 20
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 43
45
Tensile Strength: Ultimate (UTS), MPa 230
870 to 1080
Tensile Strength: Yield (Proof), MPa 140
700 to 920

Thermal Properties

Latent Heat of Fusion, J/g 210
210
Maximum Temperature: Mechanical, °C 200
210
Melting Completion (Liquidus), °C 1090
1120
Melting Onset (Solidus), °C 1040
950
Specific Heat Capacity, J/kg-K 390
380
Thermal Conductivity, W/m-K 380
29
Thermal Expansion, µm/m-K 17
17

Otherwise Unclassified Properties

Base Metal Price, % relative 31
39
Density, g/cm3 9.0
8.8
Embodied Carbon, kg CO2/kg material 2.6
4.6
Embodied Energy, MJ/kg 41
72
Embodied Water, L/kg 320
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 31
49 to 210
Resilience: Unit (Modulus of Resilience), kJ/m3 83
2030 to 3490
Stiffness to Weight: Axial, points 7.2
7.6
Stiffness to Weight: Bending, points 18
19
Strength to Weight: Axial, points 7.1
27 to 34
Strength to Weight: Bending, points 9.3
23 to 27
Thermal Diffusivity, mm2/s 110
8.6
Thermal Shock Resistance, points 8.1
31 to 38

Alloy Composition

Copper (Cu), % 99.9 to 100
74.1 to 78
Iron (Fe), % 0
0 to 0.5
Lead (Pb), % 0
0 to 0.020
Magnesium (Mg), % 0
0 to 0.15
Manganese (Mn), % 0
0 to 0.3
Nickel (Ni), % 0
14.5 to 15.5
Niobium (Nb), % 0
0 to 0.1
Oxygen (O), % 0 to 0.1
0
Silver (Ag), % 0 to 0.015
0
Tin (Sn), % 0
7.5 to 8.5
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.3