MakeItFrom.com
Menu (ESC)

CR006A Copper vs. C92800 Bronze

Both CR006A copper and C92800 bronze are copper alloys. Both are furnished in the as-fabricated (no temper or treatment) condition. They have 80% of their average alloy composition in common. There are 24 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is CR006A copper and the bottom bar is C92800 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
100
Elongation at Break, % 15
1.0
Poisson's Ratio 0.34
0.35
Shear Modulus, GPa 43
37
Tensile Strength: Ultimate (UTS), MPa 230
280
Tensile Strength: Yield (Proof), MPa 140
210

Thermal Properties

Latent Heat of Fusion, J/g 210
170
Maximum Temperature: Mechanical, °C 200
140
Melting Completion (Liquidus), °C 1090
960
Melting Onset (Solidus), °C 1040
820
Specific Heat Capacity, J/kg-K 390
350
Thermal Expansion, µm/m-K 17
18

Otherwise Unclassified Properties

Base Metal Price, % relative 31
36
Density, g/cm3 9.0
8.7
Embodied Carbon, kg CO2/kg material 2.6
4.1
Embodied Energy, MJ/kg 41
67
Embodied Water, L/kg 320
430

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 31
2.5
Resilience: Unit (Modulus of Resilience), kJ/m3 83
210
Stiffness to Weight: Axial, points 7.2
6.4
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 7.1
8.8
Strength to Weight: Bending, points 9.3
11
Thermal Shock Resistance, points 8.1
11

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Copper (Cu), % 99.9 to 100
78 to 82
Iron (Fe), % 0
0 to 0.2
Lead (Pb), % 0
4.0 to 6.0
Nickel (Ni), % 0
0 to 0.8
Oxygen (O), % 0 to 0.1
0
Phosphorus (P), % 0
0 to 1.5
Silicon (Si), % 0
0 to 0.0050
Silver (Ag), % 0 to 0.015
0
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0
15 to 17
Zinc (Zn), % 0
0 to 0.8
Residuals, % 0
0 to 0.7