MakeItFrom.com
Menu (ESC)

CR006A Copper vs. C93400 Bronze

Both CR006A copper and C93400 bronze are copper alloys. Both are furnished in the as-fabricated (no temper or treatment) condition. They have 84% of their average alloy composition in common. There are 26 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is CR006A copper and the bottom bar is C93400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
100
Elongation at Break, % 15
9.1
Poisson's Ratio 0.34
0.35
Shear Modulus, GPa 43
38
Tensile Strength: Ultimate (UTS), MPa 230
270
Tensile Strength: Yield (Proof), MPa 140
150

Thermal Properties

Latent Heat of Fusion, J/g 210
180
Maximum Temperature: Mechanical, °C 200
150
Melting Completion (Liquidus), °C 1090
950
Melting Onset (Solidus), °C 1040
850
Specific Heat Capacity, J/kg-K 390
350
Thermal Conductivity, W/m-K 380
58
Thermal Expansion, µm/m-K 17
18

Otherwise Unclassified Properties

Base Metal Price, % relative 31
32
Density, g/cm3 9.0
8.9
Embodied Carbon, kg CO2/kg material 2.6
3.3
Embodied Energy, MJ/kg 41
54
Embodied Water, L/kg 320
380

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 31
21
Resilience: Unit (Modulus of Resilience), kJ/m3 83
120
Stiffness to Weight: Axial, points 7.2
6.3
Stiffness to Weight: Bending, points 18
17
Strength to Weight: Axial, points 7.1
8.3
Strength to Weight: Bending, points 9.3
10
Thermal Diffusivity, mm2/s 110
18
Thermal Shock Resistance, points 8.1
10

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.5
Copper (Cu), % 99.9 to 100
82 to 85
Iron (Fe), % 0
0 to 0.2
Lead (Pb), % 0
7.0 to 9.0
Nickel (Ni), % 0
0 to 1.0
Oxygen (O), % 0 to 0.1
0
Phosphorus (P), % 0
0 to 1.5
Silicon (Si), % 0
0 to 0.0050
Silver (Ag), % 0 to 0.015
0
Sulfur (S), % 0
0 to 0.080
Tin (Sn), % 0
7.0 to 9.0
Zinc (Zn), % 0
0 to 0.8
Residuals, % 0
0 to 1.0