MakeItFrom.com
Menu (ESC)

CR008A Copper vs. EN 1.0303 Steel

CR008A copper belongs to the copper alloys classification, while EN 1.0303 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is CR008A copper and the bottom bar is EN 1.0303 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 15
12 to 25
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 43
73
Tensile Strength: Ultimate (UTS), MPa 220
290 to 410
Tensile Strength: Yield (Proof), MPa 130
200 to 320

Thermal Properties

Latent Heat of Fusion, J/g 210
250
Maximum Temperature: Mechanical, °C 200
400
Melting Completion (Liquidus), °C 1090
1470
Melting Onset (Solidus), °C 1040
1430
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 380
53
Thermal Expansion, µm/m-K 17
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 100
6.9
Electrical Conductivity: Equal Weight (Specific), % IACS 100
7.9

Otherwise Unclassified Properties

Base Metal Price, % relative 31
1.8
Density, g/cm3 9.0
7.9
Embodied Carbon, kg CO2/kg material 2.6
1.4
Embodied Energy, MJ/kg 41
18
Embodied Water, L/kg 320
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 29
30 to 94
Resilience: Unit (Modulus of Resilience), kJ/m3 76
110 to 270
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 6.8
10 to 15
Strength to Weight: Bending, points 9.0
12 to 16
Thermal Diffusivity, mm2/s 110
14
Thermal Shock Resistance, points 7.8
9.2 to 13

Alloy Composition

Aluminum (Al), % 0
0.020 to 0.060
Bismuth (Bi), % 0 to 0.00050
0
Carbon (C), % 0
0.020 to 0.060
Copper (Cu), % 99.95 to 100
0
Iron (Fe), % 0
99.335 to 99.71
Lead (Pb), % 0 to 0.0050
0
Manganese (Mn), % 0
0.25 to 0.4
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0
0 to 0.1
Silver (Ag), % 0 to 0.015
0
Sulfur (S), % 0
0 to 0.025