MakeItFrom.com
Menu (ESC)

CR011A Copper vs. 213.0 Aluminum

CR011A copper belongs to the copper alloys classification, while 213.0 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is CR011A copper and the bottom bar is 213.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
73
Elongation at Break, % 15
1.5
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 43
28
Tensile Strength: Ultimate (UTS), MPa 220
190
Tensile Strength: Yield (Proof), MPa 130
130

Thermal Properties

Latent Heat of Fusion, J/g 210
410
Maximum Temperature: Mechanical, °C 200
170
Melting Completion (Liquidus), °C 1090
670
Melting Onset (Solidus), °C 1040
480
Specific Heat Capacity, J/kg-K 390
850
Thermal Conductivity, W/m-K 390
130
Thermal Expansion, µm/m-K 17
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 100
34
Electrical Conductivity: Equal Weight (Specific), % IACS 100
94

Otherwise Unclassified Properties

Base Metal Price, % relative 32
11
Density, g/cm3 9.0
3.2
Embodied Carbon, kg CO2/kg material 2.6
7.7
Embodied Energy, MJ/kg 42
140
Embodied Water, L/kg 340
1090

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 29
2.5
Resilience: Unit (Modulus of Resilience), kJ/m3 76
120
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 18
44
Strength to Weight: Axial, points 6.8
16
Strength to Weight: Bending, points 9.0
23
Thermal Diffusivity, mm2/s 110
49
Thermal Shock Resistance, points 7.8
8.0

Alloy Composition

Aluminum (Al), % 0
83.5 to 93
Bismuth (Bi), % 0 to 0.00050
0
Copper (Cu), % 99.88 to 99.97
6.0 to 8.0
Iron (Fe), % 0
0 to 1.2
Magnesium (Mg), % 0
0 to 0.1
Manganese (Mn), % 0
0 to 0.6
Nickel (Ni), % 0
0 to 0.35
Oxygen (O), % 0 to 0.040
0
Silicon (Si), % 0
1.0 to 3.0
Silver (Ag), % 0.030 to 0.050
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 2.5
Residuals, % 0
0 to 0.5