MakeItFrom.com
Menu (ESC)

CR011A Copper vs. CR016A Copper

Both CR011A copper and CR016A copper are copper alloys. Both are furnished in the as-fabricated (no temper or treatment) condition. Their average alloy composition is basically identical.

For each property being compared, the top bar is CR011A copper and the bottom bar is CR016A copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
120
Elongation at Break, % 15
15
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 43
43
Tensile Strength: Ultimate (UTS), MPa 220
230
Tensile Strength: Yield (Proof), MPa 130
140

Thermal Properties

Latent Heat of Fusion, J/g 210
210
Maximum Temperature: Mechanical, °C 200
200
Melting Completion (Liquidus), °C 1090
1090
Melting Onset (Solidus), °C 1040
1040
Specific Heat Capacity, J/kg-K 390
390
Thermal Conductivity, W/m-K 390
390
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 100
98
Electrical Conductivity: Equal Weight (Specific), % IACS 100
99

Otherwise Unclassified Properties

Base Metal Price, % relative 32
35
Density, g/cm3 9.0
9.0
Embodied Carbon, kg CO2/kg material 2.6
2.7
Embodied Energy, MJ/kg 42
42
Embodied Water, L/kg 340
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 29
31
Resilience: Unit (Modulus of Resilience), kJ/m3 76
83
Stiffness to Weight: Axial, points 7.2
7.2
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 6.8
7.1
Strength to Weight: Bending, points 9.0
9.3
Thermal Diffusivity, mm2/s 110
110
Thermal Shock Resistance, points 7.8
8.1

Alloy Composition

Bismuth (Bi), % 0 to 0.00050
0 to 0.00050
Copper (Cu), % 99.88 to 99.97
99.843 to 99.919
Oxygen (O), % 0 to 0.040
0
Phosphorus (P), % 0
0.0010 to 0.0070
Silver (Ag), % 0.030 to 0.050
0.080 to 0.12