MakeItFrom.com
Menu (ESC)

CR011A Copper vs. C15500 Copper

Both CR011A copper and C15500 copper are copper alloys. Their average alloy composition is basically identical. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is CR011A copper and the bottom bar is C15500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
120
Elongation at Break, % 15
3.0 to 37
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 43
43
Tensile Strength: Ultimate (UTS), MPa 220
280 to 550
Tensile Strength: Yield (Proof), MPa 130
130 to 530

Thermal Properties

Latent Heat of Fusion, J/g 210
210
Maximum Temperature: Mechanical, °C 200
200
Melting Completion (Liquidus), °C 1090
1080
Melting Onset (Solidus), °C 1040
1080
Specific Heat Capacity, J/kg-K 390
390
Thermal Conductivity, W/m-K 390
350
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 100
90
Electrical Conductivity: Equal Weight (Specific), % IACS 100
91

Otherwise Unclassified Properties

Base Metal Price, % relative 32
33
Density, g/cm3 9.0
8.9
Embodied Carbon, kg CO2/kg material 2.6
2.7
Embodied Energy, MJ/kg 42
42
Embodied Water, L/kg 340
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 29
15 to 84
Resilience: Unit (Modulus of Resilience), kJ/m3 76
72 to 1210
Stiffness to Weight: Axial, points 7.2
7.2
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 6.8
8.6 to 17
Strength to Weight: Bending, points 9.0
11 to 17
Thermal Diffusivity, mm2/s 110
100
Thermal Shock Resistance, points 7.8
9.8 to 20

Alloy Composition

Bismuth (Bi), % 0 to 0.00050
0
Copper (Cu), % 99.88 to 99.97
99.75 to 99.853
Magnesium (Mg), % 0
0.080 to 0.13
Oxygen (O), % 0 to 0.040
0
Phosphorus (P), % 0
0.040 to 0.080
Silver (Ag), % 0.030 to 0.050
0.027 to 0.1
Residuals, % 0
0 to 0.2