MakeItFrom.com
Menu (ESC)

CR011A Copper vs. C33500 Brass

Both CR011A copper and C33500 brass are copper alloys. They have 64% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is CR011A copper and the bottom bar is C33500 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
100
Elongation at Break, % 15
3.0 to 28
Poisson's Ratio 0.34
0.31
Shear Modulus, GPa 43
40
Tensile Strength: Ultimate (UTS), MPa 220
340 to 650
Tensile Strength: Yield (Proof), MPa 130
120 to 420

Thermal Properties

Latent Heat of Fusion, J/g 210
170
Maximum Temperature: Mechanical, °C 200
120
Melting Completion (Liquidus), °C 1090
930
Melting Onset (Solidus), °C 1040
900
Specific Heat Capacity, J/kg-K 390
390
Thermal Conductivity, W/m-K 390
120
Thermal Expansion, µm/m-K 17
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 100
26
Electrical Conductivity: Equal Weight (Specific), % IACS 100
29

Otherwise Unclassified Properties

Base Metal Price, % relative 32
24
Density, g/cm3 9.0
8.1
Embodied Carbon, kg CO2/kg material 2.6
2.7
Embodied Energy, MJ/kg 42
45
Embodied Water, L/kg 340
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 29
8.0 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 76
69 to 860
Stiffness to Weight: Axial, points 7.2
7.2
Stiffness to Weight: Bending, points 18
19
Strength to Weight: Axial, points 6.8
12 to 22
Strength to Weight: Bending, points 9.0
13 to 21
Thermal Diffusivity, mm2/s 110
37
Thermal Shock Resistance, points 7.8
11 to 22

Alloy Composition

Bismuth (Bi), % 0 to 0.00050
0
Copper (Cu), % 99.88 to 99.97
62 to 65
Iron (Fe), % 0
0 to 0.1
Lead (Pb), % 0
0.25 to 0.7
Oxygen (O), % 0 to 0.040
0
Silver (Ag), % 0.030 to 0.050
0
Zinc (Zn), % 0
33.8 to 37.8
Residuals, % 0
0 to 0.4