MakeItFrom.com
Menu (ESC)

CR011A Copper vs. C51900 Bronze

Both CR011A copper and C51900 bronze are copper alloys. They have a moderately high 93% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is CR011A copper and the bottom bar is C51900 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 15
14 to 29
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 43
42
Tensile Strength: Ultimate (UTS), MPa 220
380 to 620
Tensile Strength: Yield (Proof), MPa 130
390 to 570

Thermal Properties

Latent Heat of Fusion, J/g 210
200
Maximum Temperature: Mechanical, °C 200
180
Melting Completion (Liquidus), °C 1090
1040
Melting Onset (Solidus), °C 1040
930
Specific Heat Capacity, J/kg-K 390
380
Thermal Conductivity, W/m-K 390
66
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 100
14
Electrical Conductivity: Equal Weight (Specific), % IACS 100
14

Otherwise Unclassified Properties

Base Metal Price, % relative 32
33
Density, g/cm3 9.0
8.8
Embodied Carbon, kg CO2/kg material 2.6
3.2
Embodied Energy, MJ/kg 42
51
Embodied Water, L/kg 340
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 29
55 to 180
Resilience: Unit (Modulus of Resilience), kJ/m3 76
680 to 1450
Stiffness to Weight: Axial, points 7.2
7.0
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 6.8
12 to 19
Strength to Weight: Bending, points 9.0
13 to 18
Thermal Diffusivity, mm2/s 110
20
Thermal Shock Resistance, points 7.8
14 to 22

Alloy Composition

Bismuth (Bi), % 0 to 0.00050
0
Copper (Cu), % 99.88 to 99.97
91.7 to 95
Iron (Fe), % 0
0 to 0.1
Lead (Pb), % 0
0 to 0.050
Oxygen (O), % 0 to 0.040
0
Phosphorus (P), % 0
0.030 to 0.35
Silver (Ag), % 0.030 to 0.050
0
Tin (Sn), % 0
5.0 to 7.0
Zinc (Zn), % 0
0 to 0.3
Residuals, % 0
0 to 0.5