MakeItFrom.com
Menu (ESC)

CR011A Copper vs. C53800 Bronze

Both CR011A copper and C53800 bronze are copper alloys. They have 86% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is CR011A copper and the bottom bar is C53800 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 15
2.3
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 43
40
Tensile Strength: Ultimate (UTS), MPa 220
830
Tensile Strength: Yield (Proof), MPa 130
660

Thermal Properties

Latent Heat of Fusion, J/g 210
190
Maximum Temperature: Mechanical, °C 200
160
Melting Completion (Liquidus), °C 1090
980
Melting Onset (Solidus), °C 1040
800
Specific Heat Capacity, J/kg-K 390
360
Thermal Conductivity, W/m-K 390
61
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 100
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 100
9.3

Otherwise Unclassified Properties

Base Metal Price, % relative 32
37
Density, g/cm3 9.0
8.7
Embodied Carbon, kg CO2/kg material 2.6
3.9
Embodied Energy, MJ/kg 42
64
Embodied Water, L/kg 340
420

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 29
18
Resilience: Unit (Modulus of Resilience), kJ/m3 76
2020
Stiffness to Weight: Axial, points 7.2
6.8
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 6.8
26
Strength to Weight: Bending, points 9.0
22
Thermal Diffusivity, mm2/s 110
19
Thermal Shock Resistance, points 7.8
31

Alloy Composition

Bismuth (Bi), % 0 to 0.00050
0
Copper (Cu), % 99.88 to 99.97
85.1 to 86.5
Iron (Fe), % 0
0 to 0.030
Lead (Pb), % 0
0.4 to 0.6
Manganese (Mn), % 0
0 to 0.060
Nickel (Ni), % 0
0 to 0.030
Oxygen (O), % 0 to 0.040
0
Silver (Ag), % 0.030 to 0.050
0
Tin (Sn), % 0
13.1 to 13.9
Zinc (Zn), % 0
0 to 0.12
Residuals, % 0
0 to 0.2