MakeItFrom.com
Menu (ESC)

CR011A Copper vs. C70600 Copper-nickel

Both CR011A copper and C70600 copper-nickel are copper alloys. They have 87% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is CR011A copper and the bottom bar is C70600 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
120
Elongation at Break, % 15
3.0 to 34
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 43
46
Tensile Strength: Ultimate (UTS), MPa 220
290 to 570
Tensile Strength: Yield (Proof), MPa 130
63 to 270

Thermal Properties

Latent Heat of Fusion, J/g 210
220
Maximum Temperature: Mechanical, °C 200
220
Melting Completion (Liquidus), °C 1090
1150
Melting Onset (Solidus), °C 1040
1100
Specific Heat Capacity, J/kg-K 390
390
Thermal Conductivity, W/m-K 390
44
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 100
9.8
Electrical Conductivity: Equal Weight (Specific), % IACS 100
9.9

Otherwise Unclassified Properties

Base Metal Price, % relative 32
33
Density, g/cm3 9.0
8.9
Embodied Carbon, kg CO2/kg material 2.6
3.4
Embodied Energy, MJ/kg 42
51
Embodied Water, L/kg 340
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 29
6.5 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 76
16 to 290
Stiffness to Weight: Axial, points 7.2
7.7
Stiffness to Weight: Bending, points 18
19
Strength to Weight: Axial, points 6.8
9.1 to 18
Strength to Weight: Bending, points 9.0
11 to 17
Thermal Diffusivity, mm2/s 110
13
Thermal Shock Resistance, points 7.8
9.8 to 19

Alloy Composition

Bismuth (Bi), % 0 to 0.00050
0
Copper (Cu), % 99.88 to 99.97
84.7 to 90
Iron (Fe), % 0
1.0 to 1.8
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0
9.0 to 11
Oxygen (O), % 0 to 0.040
0
Silver (Ag), % 0.030 to 0.050
0
Zinc (Zn), % 0
0 to 1.0
Residuals, % 0
0 to 0.5