MakeItFrom.com
Menu (ESC)

CR011A Copper vs. N06110 Nickel

CR011A copper belongs to the copper alloys classification, while N06110 nickel belongs to the nickel alloys. There are 24 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is CR011A copper and the bottom bar is N06110 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
210
Elongation at Break, % 15
53
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
84
Tensile Strength: Ultimate (UTS), MPa 220
730
Tensile Strength: Yield (Proof), MPa 130
330

Thermal Properties

Latent Heat of Fusion, J/g 210
340
Maximum Temperature: Mechanical, °C 200
1020
Melting Completion (Liquidus), °C 1090
1490
Melting Onset (Solidus), °C 1040
1440
Specific Heat Capacity, J/kg-K 390
440
Thermal Expansion, µm/m-K 17
12

Otherwise Unclassified Properties

Base Metal Price, % relative 32
65
Density, g/cm3 9.0
8.6
Embodied Carbon, kg CO2/kg material 2.6
11
Embodied Energy, MJ/kg 42
160
Embodied Water, L/kg 340
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 29
320
Resilience: Unit (Modulus of Resilience), kJ/m3 76
260
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
23
Strength to Weight: Axial, points 6.8
23
Strength to Weight: Bending, points 9.0
21
Thermal Shock Resistance, points 7.8
20

Alloy Composition

Aluminum (Al), % 0
0 to 1.0
Bismuth (Bi), % 0 to 0.00050
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
28 to 33
Copper (Cu), % 99.88 to 99.97
0 to 0.5
Iron (Fe), % 0
0 to 1.0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
9.0 to 12
Nickel (Ni), % 0
51 to 62
Niobium (Nb), % 0
0 to 1.0
Oxygen (O), % 0 to 0.040
0
Phosphorus (P), % 0
0 to 0.5
Silicon (Si), % 0
0 to 1.0
Silver (Ag), % 0.030 to 0.050
0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0
0 to 1.0
Tungsten (W), % 0
1.0 to 4.0