MakeItFrom.com
Menu (ESC)

CR012A Copper vs. EN AC-43000 Aluminum

CR012A copper belongs to the copper alloys classification, while EN AC-43000 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is CR012A copper and the bottom bar is EN AC-43000 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
71
Elongation at Break, % 15
1.1 to 2.5
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 43
27
Tensile Strength: Ultimate (UTS), MPa 220
180 to 270
Tensile Strength: Yield (Proof), MPa 130
97 to 230

Thermal Properties

Latent Heat of Fusion, J/g 210
540
Maximum Temperature: Mechanical, °C 200
170
Melting Completion (Liquidus), °C 1090
600
Melting Onset (Solidus), °C 1040
590
Specific Heat Capacity, J/kg-K 390
900
Thermal Conductivity, W/m-K 390
140
Thermal Expansion, µm/m-K 17
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 100
38
Electrical Conductivity: Equal Weight (Specific), % IACS 100
130

Otherwise Unclassified Properties

Base Metal Price, % relative 33
9.5
Density, g/cm3 9.0
2.6
Embodied Carbon, kg CO2/kg material 2.7
7.8
Embodied Energy, MJ/kg 42
150
Embodied Water, L/kg 360
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 29
2.9 to 5.7
Resilience: Unit (Modulus of Resilience), kJ/m3 76
66 to 360
Stiffness to Weight: Axial, points 7.2
15
Stiffness to Weight: Bending, points 18
54
Strength to Weight: Axial, points 6.8
20 to 29
Strength to Weight: Bending, points 9.0
28 to 36
Thermal Diffusivity, mm2/s 110
60
Thermal Shock Resistance, points 7.8
8.6 to 12

Alloy Composition

Aluminum (Al), % 0
87 to 90.8
Bismuth (Bi), % 0 to 0.00050
0
Copper (Cu), % 99.85 to 99.94
0 to 0.050
Iron (Fe), % 0
0 to 0.55
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 0
0.2 to 0.45
Manganese (Mn), % 0
0 to 0.45
Nickel (Ni), % 0
0 to 0.050
Oxygen (O), % 0 to 0.040
0
Silicon (Si), % 0
9.0 to 11
Silver (Ag), % 0.060 to 0.080
0
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15