MakeItFrom.com
Menu (ESC)

CR012A Copper vs. CC481K Bronze

Both CR012A copper and CC481K bronze are copper alloys. Both are furnished in the as-fabricated (no temper or treatment) condition. They have 88% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is CR012A copper and the bottom bar is CC481K bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 15
4.5
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 43
40
Tensile Strength: Ultimate (UTS), MPa 220
350
Tensile Strength: Yield (Proof), MPa 130
180

Thermal Properties

Latent Heat of Fusion, J/g 210
190
Maximum Temperature: Mechanical, °C 200
170
Melting Completion (Liquidus), °C 1090
1000
Melting Onset (Solidus), °C 1040
880
Specific Heat Capacity, J/kg-K 390
370
Thermal Conductivity, W/m-K 390
64
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 100
10
Electrical Conductivity: Equal Weight (Specific), % IACS 100
10

Otherwise Unclassified Properties

Base Metal Price, % relative 33
35
Density, g/cm3 9.0
8.7
Embodied Carbon, kg CO2/kg material 2.7
3.7
Embodied Energy, MJ/kg 42
60
Embodied Water, L/kg 360
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 29
13
Resilience: Unit (Modulus of Resilience), kJ/m3 76
150
Stiffness to Weight: Axial, points 7.2
6.9
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 6.8
11
Strength to Weight: Bending, points 9.0
13
Thermal Diffusivity, mm2/s 110
20
Thermal Shock Resistance, points 7.8
13

Alloy Composition

Aluminum (Al), % 0
0 to 0.010
Antimony (Sb), % 0
0 to 0.050
Bismuth (Bi), % 0 to 0.00050
0
Copper (Cu), % 99.85 to 99.94
87 to 89.5
Iron (Fe), % 0
0 to 0.1
Lead (Pb), % 0
0 to 0.25
Manganese (Mn), % 0
0 to 0.050
Nickel (Ni), % 0
0 to 0.1
Oxygen (O), % 0 to 0.040
0
Phosphorus (P), % 0
0 to 1.0
Silicon (Si), % 0
0 to 0.010
Silver (Ag), % 0.060 to 0.080
0
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0
10 to 11.5
Zinc (Zn), % 0
0 to 0.5