MakeItFrom.com
Menu (ESC)

CR014A Copper vs. C12900 Copper

Both CR014A copper and C12900 copper are copper alloys. Their average alloy composition is basically identical. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is CR014A copper and the bottom bar is C12900 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
120
Elongation at Break, % 15
2.8 to 50
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 43
43
Tensile Strength: Ultimate (UTS), MPa 230
220 to 420
Tensile Strength: Yield (Proof), MPa 140
75 to 380

Thermal Properties

Latent Heat of Fusion, J/g 210
210
Maximum Temperature: Mechanical, °C 200
200
Melting Completion (Liquidus), °C 1090
1080
Melting Onset (Solidus), °C 1040
1030
Specific Heat Capacity, J/kg-K 390
390
Thermal Conductivity, W/m-K 380
380
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 98
98
Electrical Conductivity: Equal Weight (Specific), % IACS 99
98

Otherwise Unclassified Properties

Base Metal Price, % relative 32
32
Density, g/cm3 9.0
9.0
Embodied Carbon, kg CO2/kg material 2.6
2.6
Embodied Energy, MJ/kg 42
41
Embodied Water, L/kg 340
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 31
11 to 88
Resilience: Unit (Modulus of Resilience), kJ/m3 83
24 to 640
Stiffness to Weight: Axial, points 7.2
7.2
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 7.1
6.8 to 13
Strength to Weight: Bending, points 9.3
9.1 to 14
Thermal Diffusivity, mm2/s 110
110
Thermal Shock Resistance, points 8.1
7.8 to 15

Alloy Composition

Antimony (Sb), % 0
0 to 0.0030
Arsenic (As), % 0
0 to 0.012
Bismuth (Bi), % 0 to 0.00050
0 to 0.0030
Copper (Cu), % 99.913 to 99.969
99.88 to 100
Lead (Pb), % 0
0 to 0.0040
Nickel (Ni), % 0
0 to 0.050
Phosphorus (P), % 0.0010 to 0.0070
0
Silver (Ag), % 0.030 to 0.050
0 to 0.054
Tellurium (Te), % 0
0 to 0.025