MakeItFrom.com
Menu (ESC)

CR014A Copper vs. C18900 Copper

Both CR014A copper and C18900 copper are copper alloys. They have a very high 98% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is CR014A copper and the bottom bar is C18900 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
120
Elongation at Break, % 15
14 to 48
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 43
43
Tensile Strength: Ultimate (UTS), MPa 230
260 to 500
Tensile Strength: Yield (Proof), MPa 140
67 to 390

Thermal Properties

Latent Heat of Fusion, J/g 210
210
Maximum Temperature: Mechanical, °C 200
200
Melting Completion (Liquidus), °C 1090
1080
Melting Onset (Solidus), °C 1040
1020
Specific Heat Capacity, J/kg-K 390
390
Thermal Conductivity, W/m-K 380
130
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 98
30
Electrical Conductivity: Equal Weight (Specific), % IACS 99
30

Otherwise Unclassified Properties

Base Metal Price, % relative 32
31
Density, g/cm3 9.0
8.9
Embodied Carbon, kg CO2/kg material 2.6
2.7
Embodied Energy, MJ/kg 42
42
Embodied Water, L/kg 340
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 31
65 to 95
Resilience: Unit (Modulus of Resilience), kJ/m3 83
20 to 660
Stiffness to Weight: Axial, points 7.2
7.2
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 7.1
8.2 to 16
Strength to Weight: Bending, points 9.3
10 to 16
Thermal Diffusivity, mm2/s 110
38
Thermal Shock Resistance, points 8.1
9.3 to 18

Alloy Composition

Aluminum (Al), % 0
0 to 0.010
Bismuth (Bi), % 0 to 0.00050
0
Copper (Cu), % 99.913 to 99.969
97.7 to 99.15
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0
0.1 to 0.3
Phosphorus (P), % 0.0010 to 0.0070
0 to 0.050
Silicon (Si), % 0
0.15 to 0.4
Silver (Ag), % 0.030 to 0.050
0
Tin (Sn), % 0
0.6 to 0.9
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.5