MakeItFrom.com
Menu (ESC)

CR014A Copper vs. C86500 Bronze

Both CR014A copper and C86500 bronze are copper alloys. Both are furnished in the as-fabricated (no temper or treatment) condition. They have 58% of their average alloy composition in common.

For each property being compared, the top bar is CR014A copper and the bottom bar is C86500 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 15
25
Poisson's Ratio 0.34
0.3
Shear Modulus, GPa 43
40
Tensile Strength: Ultimate (UTS), MPa 230
530
Tensile Strength: Yield (Proof), MPa 140
190

Thermal Properties

Latent Heat of Fusion, J/g 210
170
Maximum Temperature: Mechanical, °C 200
120
Melting Completion (Liquidus), °C 1090
880
Melting Onset (Solidus), °C 1040
860
Specific Heat Capacity, J/kg-K 390
390
Thermal Conductivity, W/m-K 380
86
Thermal Expansion, µm/m-K 17
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 98
22
Electrical Conductivity: Equal Weight (Specific), % IACS 99
25

Otherwise Unclassified Properties

Base Metal Price, % relative 32
23
Density, g/cm3 9.0
7.9
Embodied Carbon, kg CO2/kg material 2.6
2.8
Embodied Energy, MJ/kg 42
48
Embodied Water, L/kg 340
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 31
110
Resilience: Unit (Modulus of Resilience), kJ/m3 83
180
Stiffness to Weight: Axial, points 7.2
7.4
Stiffness to Weight: Bending, points 18
20
Strength to Weight: Axial, points 7.1
19
Strength to Weight: Bending, points 9.3
18
Thermal Diffusivity, mm2/s 110
28
Thermal Shock Resistance, points 8.1
17

Alloy Composition

Aluminum (Al), % 0
0.5 to 1.5
Bismuth (Bi), % 0 to 0.00050
0
Copper (Cu), % 99.913 to 99.969
55 to 60
Iron (Fe), % 0
0.4 to 2.0
Lead (Pb), % 0
0 to 0.4
Manganese (Mn), % 0
0.1 to 1.5
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0.0010 to 0.0070
0
Silver (Ag), % 0.030 to 0.050
0
Tin (Sn), % 0
0 to 1.0
Zinc (Zn), % 0
36 to 42
Residuals, % 0
0 to 1.0