MakeItFrom.com
Menu (ESC)

CR022A Copper vs. C48500 Brass

Both CR022A copper and C48500 brass are copper alloys. They have 61% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is CR022A copper and the bottom bar is C48500 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
100
Elongation at Break, % 15
13 to 40
Poisson's Ratio 0.34
0.31
Shear Modulus, GPa 43
39
Tensile Strength: Ultimate (UTS), MPa 230
400 to 500
Tensile Strength: Yield (Proof), MPa 140
160 to 320

Thermal Properties

Latent Heat of Fusion, J/g 210
170
Maximum Temperature: Mechanical, °C 200
120
Melting Completion (Liquidus), °C 1090
900
Melting Onset (Solidus), °C 1040
890
Specific Heat Capacity, J/kg-K 390
380
Thermal Conductivity, W/m-K 380
120
Thermal Expansion, µm/m-K 17
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 100
26
Electrical Conductivity: Equal Weight (Specific), % IACS 100
29

Otherwise Unclassified Properties

Base Metal Price, % relative 31
23
Density, g/cm3 9.0
8.1
Embodied Carbon, kg CO2/kg material 2.6
2.7
Embodied Energy, MJ/kg 41
46
Embodied Water, L/kg 310
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 31
56 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 83
120 to 500
Stiffness to Weight: Axial, points 7.2
7.1
Stiffness to Weight: Bending, points 18
19
Strength to Weight: Axial, points 7.1
14 to 17
Strength to Weight: Bending, points 9.3
15 to 17
Thermal Diffusivity, mm2/s 110
38
Thermal Shock Resistance, points 8.1
13 to 17

Alloy Composition

Antimony (Sb), % 0 to 0.00040
0
Arsenic (As), % 0 to 0.00050
0
Bismuth (Bi), % 0 to 0.00020
0
Cadmium (Cd), % 0 to 0.00010
0
Copper (Cu), % 99.99 to 99.999
59 to 62
Iron (Fe), % 0 to 0.0010
0 to 0.1
Lead (Pb), % 0 to 0.00050
1.3 to 2.2
Manganese (Mn), % 0 to 0.00050
0
Nickel (Ni), % 0 to 0.0010
0
Phosphorus (P), % 0.0010 to 0.0060
0
Selenium (Se), % 0 to 0.00020
0
Silver (Ag), % 0 to 0.0025
0
Sulfur (S), % 0 to 0.0015
0
Tellurium (Te), % 0 to 0.00020
0
Tin (Sn), % 0 to 0.00020
0.5 to 1.0
Zinc (Zn), % 0 to 0.00010
34.3 to 39.2
Residuals, % 0
0 to 0.4