MakeItFrom.com
Menu (ESC)

CR023A Copper vs. EN 1.4606 Stainless Steel

CR023A copper belongs to the copper alloys classification, while EN 1.4606 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is CR023A copper and the bottom bar is EN 1.4606 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 15
23 to 39
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 43
75
Tensile Strength: Ultimate (UTS), MPa 220
600 to 1020
Tensile Strength: Yield (Proof), MPa 130
280 to 630

Thermal Properties

Latent Heat of Fusion, J/g 210
300
Maximum Temperature: Mechanical, °C 200
910
Melting Completion (Liquidus), °C 1090
1430
Melting Onset (Solidus), °C 1040
1380
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 380
14
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 100
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 100
2.2

Otherwise Unclassified Properties

Base Metal Price, % relative 31
26
Density, g/cm3 9.0
7.9
Embodied Carbon, kg CO2/kg material 2.6
6.0
Embodied Energy, MJ/kg 41
87
Embodied Water, L/kg 320
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 29
190 to 200
Resilience: Unit (Modulus of Resilience), kJ/m3 76
200 to 1010
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 6.8
21 to 36
Strength to Weight: Bending, points 9.0
20 to 28
Thermal Diffusivity, mm2/s 110
3.7
Thermal Shock Resistance, points 7.8
21 to 35

Alloy Composition

Aluminum (Al), % 0
0 to 0.35
Bismuth (Bi), % 0 to 0.00050
0
Boron (B), % 0
0.0010 to 0.010
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
13 to 16
Copper (Cu), % 99.9 to 99.995
0
Iron (Fe), % 0
49.2 to 59
Lead (Pb), % 0 to 0.0050
0
Manganese (Mn), % 0
1.0 to 2.0
Molybdenum (Mo), % 0
1.0 to 1.5
Nickel (Ni), % 0
24 to 27
Phosphorus (P), % 0.0050 to 0.013
0 to 0.025
Silicon (Si), % 0
0 to 1.0
Silver (Ag), % 0 to 0.015
0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0
1.9 to 2.3
Vanadium (V), % 0
0.1 to 0.5