MakeItFrom.com
Menu (ESC)

CR025A Copper vs. 2017A Aluminum

CR025A copper belongs to the copper alloys classification, while 2017A aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is CR025A copper and the bottom bar is 2017A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
71
Elongation at Break, % 15
2.2 to 14
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 43
27
Tensile Strength: Ultimate (UTS), MPa 230
200 to 460
Tensile Strength: Yield (Proof), MPa 140
110 to 290

Thermal Properties

Latent Heat of Fusion, J/g 210
390
Maximum Temperature: Mechanical, °C 200
220
Melting Completion (Liquidus), °C 1090
650
Melting Onset (Solidus), °C 1040
510
Specific Heat Capacity, J/kg-K 390
880
Thermal Conductivity, W/m-K 370
150
Thermal Expansion, µm/m-K 17
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 99
34
Electrical Conductivity: Equal Weight (Specific), % IACS 99
100

Otherwise Unclassified Properties

Base Metal Price, % relative 31
11
Density, g/cm3 9.0
3.0
Embodied Carbon, kg CO2/kg material 2.6
8.2
Embodied Energy, MJ/kg 41
150
Embodied Water, L/kg 320
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 31
6.7 to 53
Resilience: Unit (Modulus of Resilience), kJ/m3 83
90 to 570
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 18
46
Strength to Weight: Axial, points 7.1
19 to 42
Strength to Weight: Bending, points 9.3
26 to 44
Thermal Diffusivity, mm2/s 110
56
Thermal Shock Resistance, points 8.1
8.9 to 20

Alloy Composition

Aluminum (Al), % 0
91.3 to 95.5
Bismuth (Bi), % 0 to 0.00050
0
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 99.9 to 99.96
3.5 to 4.5
Iron (Fe), % 0
0 to 0.7
Lead (Pb), % 0 to 0.0050
0
Magnesium (Mg), % 0
0.4 to 1.0
Manganese (Mn), % 0
0.4 to 1.0
Phosphorus (P), % 0.040 to 0.060
0
Silicon (Si), % 0
0.2 to 0.8
Silver (Ag), % 0 to 0.015
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 0.25
Zirconium (Zr), % 0
0 to 0.25
Residuals, % 0
0 to 0.15