MakeItFrom.com
Menu (ESC)

CR025A Copper vs. EN 1.4913 Stainless Steel

CR025A copper belongs to the copper alloys classification, while EN 1.4913 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is CR025A copper and the bottom bar is EN 1.4913 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 15
14 to 22
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
75
Tensile Strength: Ultimate (UTS), MPa 230
870 to 980
Tensile Strength: Yield (Proof), MPa 140
480 to 850

Thermal Properties

Latent Heat of Fusion, J/g 210
270
Maximum Temperature: Mechanical, °C 200
700
Melting Completion (Liquidus), °C 1090
1460
Melting Onset (Solidus), °C 1040
1410
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 370
24
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 99
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 99
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 31
9.0
Density, g/cm3 9.0
7.8
Embodied Carbon, kg CO2/kg material 2.6
2.9
Embodied Energy, MJ/kg 41
41
Embodied Water, L/kg 320
97

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 31
130 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 83
600 to 1860
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 7.1
31 to 35
Strength to Weight: Bending, points 9.3
26 to 28
Thermal Diffusivity, mm2/s 110
6.5
Thermal Shock Resistance, points 8.1
31 to 34

Alloy Composition

Aluminum (Al), % 0
0 to 0.020
Bismuth (Bi), % 0 to 0.00050
0
Boron (B), % 0
0 to 0.0015
Carbon (C), % 0
0.17 to 0.23
Chromium (Cr), % 0
10 to 11.5
Copper (Cu), % 99.9 to 99.96
0
Iron (Fe), % 0
84.5 to 88.3
Lead (Pb), % 0 to 0.0050
0
Manganese (Mn), % 0
0.4 to 0.9
Molybdenum (Mo), % 0
0.5 to 0.8
Nickel (Ni), % 0
0.2 to 0.6
Niobium (Nb), % 0
0.25 to 0.55
Nitrogen (N), % 0
0.050 to 0.1
Phosphorus (P), % 0.040 to 0.060
0 to 0.025
Silicon (Si), % 0
0 to 0.5
Silver (Ag), % 0 to 0.015
0
Sulfur (S), % 0
0 to 0.015
Vanadium (V), % 0
0.1 to 0.3