MakeItFrom.com
Menu (ESC)

EN-MC21110 Magnesium vs. 5383 Aluminum

EN-MC21110 magnesium belongs to the magnesium alloys classification, while 5383 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN-MC21110 magnesium and the bottom bar is 5383 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 58 to 63
85 to 110
Elastic (Young's, Tensile) Modulus, GPa 46
68
Elongation at Break, % 2.8 to 6.7
6.7 to 15
Fatigue Strength, MPa 75 to 78
130 to 200
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 18
26
Shear Strength, MPa 120 to 160
190 to 220
Tensile Strength: Ultimate (UTS), MPa 200 to 270
310 to 370
Tensile Strength: Yield (Proof), MPa 100 to 120
150 to 310

Thermal Properties

Latent Heat of Fusion, J/g 350
390
Maximum Temperature: Mechanical, °C 130
200
Melting Completion (Liquidus), °C 600
650
Melting Onset (Solidus), °C 500
540
Specific Heat Capacity, J/kg-K 990
900
Thermal Conductivity, W/m-K 80
130
Thermal Expansion, µm/m-K 26
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
29
Electrical Conductivity: Equal Weight (Specific), % IACS 61
97

Otherwise Unclassified Properties

Base Metal Price, % relative 12
9.5
Density, g/cm3 1.7
2.7
Embodied Carbon, kg CO2/kg material 23
9.0
Embodied Energy, MJ/kg 160
160
Embodied Water, L/kg 990
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.9 to 14
23 to 40
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 150
170 to 690
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 69
50
Strength to Weight: Axial, points 33 to 44
32 to 38
Strength to Weight: Bending, points 45 to 54
38 to 42
Thermal Diffusivity, mm2/s 47
51
Thermal Shock Resistance, points 12 to 16
14 to 16

Alloy Composition

Aluminum (Al), % 7.0 to 8.7
92 to 95.3
Chromium (Cr), % 0
0 to 0.25
Copper (Cu), % 0 to 0.030
0 to 0.2
Iron (Fe), % 0 to 0.0050
0 to 0.25
Magnesium (Mg), % 89.6 to 92.6
4.0 to 5.2
Manganese (Mn), % 0.1 to 0.35
0.7 to 1.0
Nickel (Ni), % 0 to 0.0020
0
Silicon (Si), % 0 to 0.2
0 to 0.25
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 0.35 to 1.0
0 to 0.4
Zirconium (Zr), % 0
0 to 0.2
Residuals, % 0
0 to 0.15