MakeItFrom.com
Menu (ESC)

EN-MC21110 Magnesium vs. AISI 446 Stainless Steel

EN-MC21110 magnesium belongs to the magnesium alloys classification, while AISI 446 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN-MC21110 magnesium and the bottom bar is AISI 446 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 58 to 63
190
Elastic (Young's, Tensile) Modulus, GPa 46
200
Elongation at Break, % 2.8 to 6.7
23
Fatigue Strength, MPa 75 to 78
200
Poisson's Ratio 0.29
0.27
Shear Modulus, GPa 18
79
Shear Strength, MPa 120 to 160
360
Tensile Strength: Ultimate (UTS), MPa 200 to 270
570
Tensile Strength: Yield (Proof), MPa 100 to 120
300

Thermal Properties

Latent Heat of Fusion, J/g 350
290
Maximum Temperature: Mechanical, °C 130
1180
Melting Completion (Liquidus), °C 600
1510
Melting Onset (Solidus), °C 500
1430
Specific Heat Capacity, J/kg-K 990
490
Thermal Conductivity, W/m-K 80
17
Thermal Expansion, µm/m-K 26
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 61
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 12
12
Density, g/cm3 1.7
7.7
Embodied Carbon, kg CO2/kg material 23
2.4
Embodied Energy, MJ/kg 160
35
Embodied Water, L/kg 990
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.9 to 14
110
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 150
230
Stiffness to Weight: Axial, points 15
15
Stiffness to Weight: Bending, points 69
26
Strength to Weight: Axial, points 33 to 44
21
Strength to Weight: Bending, points 45 to 54
20
Thermal Diffusivity, mm2/s 47
4.6
Thermal Shock Resistance, points 12 to 16
19

Alloy Composition

Aluminum (Al), % 7.0 to 8.7
0
Carbon (C), % 0
0 to 0.2
Chromium (Cr), % 0
23 to 27
Copper (Cu), % 0 to 0.030
0
Iron (Fe), % 0 to 0.0050
69.2 to 77
Magnesium (Mg), % 89.6 to 92.6
0
Manganese (Mn), % 0.1 to 0.35
0 to 1.5
Nickel (Ni), % 0 to 0.0020
0 to 0.75
Nitrogen (N), % 0
0 to 0.25
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.2
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 0.35 to 1.0
0
Residuals, % 0 to 0.010
0