MakeItFrom.com
Menu (ESC)

EN-MC21110 Magnesium vs. ASTM Grade LC9 Steel

EN-MC21110 magnesium belongs to the magnesium alloys classification, while ASTM grade LC9 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN-MC21110 magnesium and the bottom bar is ASTM grade LC9 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 58 to 63
200
Elastic (Young's, Tensile) Modulus, GPa 46
190
Elongation at Break, % 2.8 to 6.7
22
Fatigue Strength, MPa 75 to 78
420
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 18
73
Tensile Strength: Ultimate (UTS), MPa 200 to 270
660
Tensile Strength: Yield (Proof), MPa 100 to 120
590

Thermal Properties

Latent Heat of Fusion, J/g 350
260
Maximum Temperature: Mechanical, °C 130
430
Melting Completion (Liquidus), °C 600
1450
Melting Onset (Solidus), °C 500
1410
Specific Heat Capacity, J/kg-K 990
470
Thermal Expansion, µm/m-K 26
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
8.9
Electrical Conductivity: Equal Weight (Specific), % IACS 61
10

Otherwise Unclassified Properties

Base Metal Price, % relative 12
8.0
Density, g/cm3 1.7
7.9
Embodied Carbon, kg CO2/kg material 23
2.3
Embodied Energy, MJ/kg 160
31
Embodied Water, L/kg 990
65

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.9 to 14
140
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 150
920
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 69
24
Strength to Weight: Axial, points 33 to 44
23
Strength to Weight: Bending, points 45 to 54
21
Thermal Shock Resistance, points 12 to 16
20

Alloy Composition

Aluminum (Al), % 7.0 to 8.7
0
Carbon (C), % 0
0 to 0.13
Chromium (Cr), % 0
0 to 0.5
Copper (Cu), % 0 to 0.030
0 to 0.3
Iron (Fe), % 0 to 0.0050
87.4 to 91.5
Magnesium (Mg), % 89.6 to 92.6
0
Manganese (Mn), % 0.1 to 0.35
0 to 0.9
Molybdenum (Mo), % 0
0 to 0.2
Nickel (Ni), % 0 to 0.0020
8.5 to 10
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.2
0 to 0.45
Sulfur (S), % 0
0 to 0.045
Vanadium (V), % 0
0 to 0.030
Zinc (Zn), % 0.35 to 1.0
0
Residuals, % 0 to 0.010
0