MakeItFrom.com
Menu (ESC)

EN-MC21110 Magnesium vs. EN 2.4650 Nickel

EN-MC21110 magnesium belongs to the magnesium alloys classification, while EN 2.4650 nickel belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN-MC21110 magnesium and the bottom bar is EN 2.4650 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 46
210
Elongation at Break, % 2.8 to 6.7
34
Fatigue Strength, MPa 75 to 78
480
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 18
80
Shear Strength, MPa 120 to 160
730
Tensile Strength: Ultimate (UTS), MPa 200 to 270
1090
Tensile Strength: Yield (Proof), MPa 100 to 120
650

Thermal Properties

Latent Heat of Fusion, J/g 350
320
Maximum Temperature: Mechanical, °C 130
1010
Melting Completion (Liquidus), °C 600
1400
Melting Onset (Solidus), °C 500
1350
Specific Heat Capacity, J/kg-K 990
450
Thermal Conductivity, W/m-K 80
12
Thermal Expansion, µm/m-K 26
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 61
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 12
80
Density, g/cm3 1.7
8.5
Embodied Carbon, kg CO2/kg material 23
10
Embodied Energy, MJ/kg 160
140
Embodied Water, L/kg 990
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.9 to 14
320
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 150
1030
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 69
23
Strength to Weight: Axial, points 33 to 44
36
Strength to Weight: Bending, points 45 to 54
28
Thermal Diffusivity, mm2/s 47
3.1
Thermal Shock Resistance, points 12 to 16
33

Alloy Composition

Aluminum (Al), % 7.0 to 8.7
0.3 to 0.6
Boron (B), % 0
0 to 0.0050
Carbon (C), % 0
0.040 to 0.080
Chromium (Cr), % 0
19 to 21
Cobalt (Co), % 0
19 to 21
Copper (Cu), % 0 to 0.030
0 to 0.2
Iron (Fe), % 0 to 0.0050
0 to 0.7
Magnesium (Mg), % 89.6 to 92.6
0
Manganese (Mn), % 0.1 to 0.35
0 to 0.6
Molybdenum (Mo), % 0
5.6 to 6.1
Nickel (Ni), % 0 to 0.0020
46.9 to 54.2
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.2
0 to 0.4
Sulfur (S), % 0
0 to 0.0070
Titanium (Ti), % 0
1.9 to 2.4
Zinc (Zn), % 0.35 to 1.0
0
Residuals, % 0 to 0.010
0