MakeItFrom.com
Menu (ESC)

EN-MC21110 Magnesium vs. S44635 Stainless Steel

EN-MC21110 magnesium belongs to the magnesium alloys classification, while S44635 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN-MC21110 magnesium and the bottom bar is S44635 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 58 to 63
240
Elastic (Young's, Tensile) Modulus, GPa 46
210
Elongation at Break, % 2.8 to 6.7
23
Fatigue Strength, MPa 75 to 78
390
Poisson's Ratio 0.29
0.27
Shear Modulus, GPa 18
81
Shear Strength, MPa 120 to 160
450
Tensile Strength: Ultimate (UTS), MPa 200 to 270
710
Tensile Strength: Yield (Proof), MPa 100 to 120
580

Thermal Properties

Latent Heat of Fusion, J/g 350
300
Maximum Temperature: Mechanical, °C 130
1100
Melting Completion (Liquidus), °C 600
1460
Melting Onset (Solidus), °C 500
1420
Specific Heat Capacity, J/kg-K 990
470
Thermal Conductivity, W/m-K 80
16
Thermal Expansion, µm/m-K 26
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 61
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 12
22
Density, g/cm3 1.7
7.8
Embodied Carbon, kg CO2/kg material 23
4.4
Embodied Energy, MJ/kg 160
62
Embodied Water, L/kg 990
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.9 to 14
150
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 150
810
Stiffness to Weight: Axial, points 15
15
Stiffness to Weight: Bending, points 69
25
Strength to Weight: Axial, points 33 to 44
25
Strength to Weight: Bending, points 45 to 54
23
Thermal Diffusivity, mm2/s 47
4.4
Thermal Shock Resistance, points 12 to 16
23

Alloy Composition

Aluminum (Al), % 7.0 to 8.7
0
Carbon (C), % 0
0 to 0.025
Chromium (Cr), % 0
24.5 to 26
Copper (Cu), % 0 to 0.030
0
Iron (Fe), % 0 to 0.0050
61.5 to 68.5
Magnesium (Mg), % 89.6 to 92.6
0
Manganese (Mn), % 0.1 to 0.35
0 to 1.0
Molybdenum (Mo), % 0
3.5 to 4.5
Nickel (Ni), % 0 to 0.0020
3.5 to 4.5
Niobium (Nb), % 0
0.2 to 0.8
Nitrogen (N), % 0
0 to 0.035
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.2
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0
0.2 to 0.8
Zinc (Zn), % 0.35 to 1.0
0
Residuals, % 0 to 0.010
0