MakeItFrom.com
Menu (ESC)

EN-MC21120 Magnesium vs. 6018 Aluminum

EN-MC21120 magnesium belongs to the magnesium alloys classification, while 6018 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN-MC21120 magnesium and the bottom bar is 6018 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 46
69
Elongation at Break, % 2.2 to 6.7
9.0 to 9.1
Fatigue Strength, MPa 84 to 96
85 to 89
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 18
26
Shear Strength, MPa 110 to 160
170 to 180
Tensile Strength: Ultimate (UTS), MPa 200 to 270
290 to 300
Tensile Strength: Yield (Proof), MPa 130 to 170
220 to 230

Thermal Properties

Latent Heat of Fusion, J/g 350
400
Maximum Temperature: Mechanical, °C 130
160
Melting Completion (Liquidus), °C 600
640
Melting Onset (Solidus), °C 490
570
Specific Heat Capacity, J/kg-K 990
890
Thermal Conductivity, W/m-K 76
170
Thermal Expansion, µm/m-K 26
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
44
Electrical Conductivity: Equal Weight (Specific), % IACS 59
140

Otherwise Unclassified Properties

Base Metal Price, % relative 12
10
Density, g/cm3 1.7
2.9
Embodied Carbon, kg CO2/kg material 22
8.2
Embodied Energy, MJ/kg 160
150
Embodied Water, L/kg 990
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.0 to 15
24 to 25
Resilience: Unit (Modulus of Resilience), kJ/m3 180 to 320
360 to 380
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 69
48
Strength to Weight: Axial, points 31 to 43
28 to 29
Strength to Weight: Bending, points 43 to 53
34 to 35
Thermal Diffusivity, mm2/s 44
65
Thermal Shock Resistance, points 11 to 16
13

Alloy Composition

Aluminum (Al), % 8.3 to 9.7
93.1 to 97.8
Bismuth (Bi), % 0
0.4 to 0.7
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 0 to 0.030
0.15 to 0.4
Iron (Fe), % 0 to 0.0050
0 to 0.7
Lead (Pb), % 0
0.4 to 1.2
Magnesium (Mg), % 88.6 to 91.3
0.6 to 1.2
Manganese (Mn), % 0.1 to 0.5
0.3 to 0.8
Nickel (Ni), % 0 to 0.0020
0
Silicon (Si), % 0 to 0.2
0.5 to 1.2
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0.35 to 1.0
0 to 0.3
Residuals, % 0
0 to 0.15

Comparable Variants