MakeItFrom.com
Menu (ESC)

EN-MC21120 Magnesium vs. ASTM Grade HD Steel

EN-MC21120 magnesium belongs to the magnesium alloys classification, while ASTM grade HD steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN-MC21120 magnesium and the bottom bar is ASTM grade HD steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 46
200
Elongation at Break, % 2.2 to 6.7
9.1
Fatigue Strength, MPa 84 to 96
140
Poisson's Ratio 0.29
0.27
Shear Modulus, GPa 18
80
Tensile Strength: Ultimate (UTS), MPa 200 to 270
590
Tensile Strength: Yield (Proof), MPa 130 to 170
270

Thermal Properties

Latent Heat of Fusion, J/g 350
310
Maximum Temperature: Mechanical, °C 130
1100
Melting Completion (Liquidus), °C 600
1410
Melting Onset (Solidus), °C 490
1370
Specific Heat Capacity, J/kg-K 990
490
Thermal Conductivity, W/m-K 76
16
Thermal Expansion, µm/m-K 26
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 59
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 12
17
Density, g/cm3 1.7
7.7
Embodied Carbon, kg CO2/kg material 22
3.1
Embodied Energy, MJ/kg 160
45
Embodied Water, L/kg 990
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.0 to 15
44
Resilience: Unit (Modulus of Resilience), kJ/m3 180 to 320
180
Stiffness to Weight: Axial, points 15
15
Stiffness to Weight: Bending, points 69
26
Strength to Weight: Axial, points 31 to 43
21
Strength to Weight: Bending, points 43 to 53
20
Thermal Diffusivity, mm2/s 44
4.3
Thermal Shock Resistance, points 11 to 16
19

Alloy Composition

Aluminum (Al), % 8.3 to 9.7
0
Carbon (C), % 0
0 to 0.5
Chromium (Cr), % 0
26 to 30
Copper (Cu), % 0 to 0.030
0
Iron (Fe), % 0 to 0.0050
58.4 to 70
Magnesium (Mg), % 88.6 to 91.3
0
Manganese (Mn), % 0.1 to 0.5
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0 to 0.0020
4.0 to 7.0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.2
0 to 2.0
Sulfur (S), % 0
0 to 0.040
Zinc (Zn), % 0.35 to 1.0
0
Residuals, % 0 to 0.010
0