MakeItFrom.com
Menu (ESC)

EN-MC21120 Magnesium vs. ASTM Grade HG10 MNN Steel

EN-MC21120 magnesium belongs to the magnesium alloys classification, while ASTM grade HG10 MNN steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN-MC21120 magnesium and the bottom bar is ASTM grade HG10 MNN steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 63 to 75
170
Elastic (Young's, Tensile) Modulus, GPa 46
200
Elongation at Break, % 2.2 to 6.7
23
Fatigue Strength, MPa 84 to 96
170
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 18
77
Tensile Strength: Ultimate (UTS), MPa 200 to 270
590
Tensile Strength: Yield (Proof), MPa 130 to 170
250

Thermal Properties

Latent Heat of Fusion, J/g 350
290
Maximum Temperature: Mechanical, °C 130
990
Melting Completion (Liquidus), °C 600
1420
Melting Onset (Solidus), °C 490
1370
Specific Heat Capacity, J/kg-K 990
480
Thermal Conductivity, W/m-K 76
15
Thermal Expansion, µm/m-K 26
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 59
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 12
21
Density, g/cm3 1.7
7.8
Embodied Carbon, kg CO2/kg material 22
4.0
Embodied Energy, MJ/kg 160
58
Embodied Water, L/kg 990
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.0 to 15
110
Resilience: Unit (Modulus of Resilience), kJ/m3 180 to 320
160
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 69
25
Strength to Weight: Axial, points 31 to 43
21
Strength to Weight: Bending, points 43 to 53
20
Thermal Diffusivity, mm2/s 44
3.9
Thermal Shock Resistance, points 11 to 16
13

Alloy Composition

Aluminum (Al), % 8.3 to 9.7
0
Carbon (C), % 0
0.070 to 0.11
Chromium (Cr), % 0
18.5 to 20.5
Copper (Cu), % 0 to 0.030
0 to 0.5
Iron (Fe), % 0 to 0.0050
57.9 to 66.5
Magnesium (Mg), % 88.6 to 91.3
0
Manganese (Mn), % 0.1 to 0.5
3.0 to 5.0
Molybdenum (Mo), % 0
0.25 to 0.45
Nickel (Ni), % 0 to 0.0020
11.5 to 13.5
Niobium (Nb), % 0
0.2 to 1.0
Nitrogen (N), % 0
0.2 to 0.3
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.2
0 to 0.7
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 0.35 to 1.0
0
Residuals, % 0 to 0.010
0