MakeItFrom.com
Menu (ESC)

EN-MC21120 Magnesium vs. AWS E80C-B3L

EN-MC21120 magnesium belongs to the magnesium alloys classification, while AWS E80C-B3L belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN-MC21120 magnesium and the bottom bar is AWS E80C-B3L.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 46
190
Elongation at Break, % 2.2 to 6.7
19
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 18
73
Tensile Strength: Ultimate (UTS), MPa 200 to 270
620
Tensile Strength: Yield (Proof), MPa 130 to 170
540

Thermal Properties

Latent Heat of Fusion, J/g 350
260
Melting Completion (Liquidus), °C 600
1460
Melting Onset (Solidus), °C 490
1420
Specific Heat Capacity, J/kg-K 990
470
Thermal Conductivity, W/m-K 76
41
Thermal Expansion, µm/m-K 26
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
7.7
Electrical Conductivity: Equal Weight (Specific), % IACS 59
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 12
4.0
Density, g/cm3 1.7
7.8
Embodied Carbon, kg CO2/kg material 22
1.8
Embodied Energy, MJ/kg 160
24
Embodied Water, L/kg 990
60

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.0 to 15
110
Resilience: Unit (Modulus of Resilience), kJ/m3 180 to 320
760
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 69
24
Strength to Weight: Axial, points 31 to 43
22
Strength to Weight: Bending, points 43 to 53
21
Thermal Diffusivity, mm2/s 44
11
Thermal Shock Resistance, points 11 to 16
18

Alloy Composition

Aluminum (Al), % 8.3 to 9.7
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
2.0 to 2.5
Copper (Cu), % 0 to 0.030
0 to 0.35
Iron (Fe), % 0 to 0.0050
93.5 to 96.5
Magnesium (Mg), % 88.6 to 91.3
0
Manganese (Mn), % 0.1 to 0.5
0.4 to 1.0
Molybdenum (Mo), % 0
0.9 to 1.2
Nickel (Ni), % 0 to 0.0020
0 to 0.2
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.2
0.25 to 0.6
Sulfur (S), % 0
0 to 0.030
Vanadium (V), % 0
0 to 0.030
Zinc (Zn), % 0.35 to 1.0
0
Residuals, % 0
0 to 0.5