MakeItFrom.com
Menu (ESC)

EN-MC21120 Magnesium vs. EN 1.4613 Stainless Steel

EN-MC21120 magnesium belongs to the magnesium alloys classification, while EN 1.4613 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN-MC21120 magnesium and the bottom bar is EN 1.4613 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 63 to 75
180
Elastic (Young's, Tensile) Modulus, GPa 46
200
Elongation at Break, % 2.2 to 6.7
21
Fatigue Strength, MPa 84 to 96
180
Poisson's Ratio 0.29
0.27
Shear Modulus, GPa 18
79
Shear Strength, MPa 110 to 160
330
Tensile Strength: Ultimate (UTS), MPa 200 to 270
530
Tensile Strength: Yield (Proof), MPa 130 to 170
280

Thermal Properties

Latent Heat of Fusion, J/g 350
290
Maximum Temperature: Mechanical, °C 130
1050
Melting Completion (Liquidus), °C 600
1430
Melting Onset (Solidus), °C 490
1390
Specific Heat Capacity, J/kg-K 990
480
Thermal Conductivity, W/m-K 76
19
Thermal Expansion, µm/m-K 26
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 59
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 12
12
Density, g/cm3 1.7
7.7
Embodied Carbon, kg CO2/kg material 22
2.6
Embodied Energy, MJ/kg 160
38
Embodied Water, L/kg 990
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.0 to 15
91
Resilience: Unit (Modulus of Resilience), kJ/m3 180 to 320
190
Stiffness to Weight: Axial, points 15
15
Stiffness to Weight: Bending, points 69
25
Strength to Weight: Axial, points 31 to 43
19
Strength to Weight: Bending, points 43 to 53
19
Thermal Diffusivity, mm2/s 44
5.2
Thermal Shock Resistance, points 11 to 16
18

Alloy Composition

Aluminum (Al), % 8.3 to 9.7
0 to 0.050
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
22 to 25
Copper (Cu), % 0 to 0.030
0 to 0.5
Iron (Fe), % 0 to 0.0050
70.3 to 77.8
Magnesium (Mg), % 88.6 to 91.3
0
Manganese (Mn), % 0.1 to 0.5
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0 to 0.0020
0 to 0.5
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 0 to 0.2
0 to 1.0
Sulfur (S), % 0
0 to 0.050
Titanium (Ti), % 0
0.2 to 1.0
Zinc (Zn), % 0.35 to 1.0
0
Residuals, % 0 to 0.010
0