MakeItFrom.com
Menu (ESC)

EN-MC21120 Magnesium vs. EN 1.8519 Steel

EN-MC21120 magnesium belongs to the magnesium alloys classification, while EN 1.8519 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN-MC21120 magnesium and the bottom bar is EN 1.8519 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 63 to 75
360
Elastic (Young's, Tensile) Modulus, GPa 46
190
Elongation at Break, % 2.2 to 6.7
10
Fatigue Strength, MPa 84 to 96
630
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 18
73
Shear Strength, MPa 110 to 160
710
Tensile Strength: Ultimate (UTS), MPa 200 to 270
1200
Tensile Strength: Yield (Proof), MPa 130 to 170
1030

Thermal Properties

Latent Heat of Fusion, J/g 350
250
Maximum Temperature: Mechanical, °C 130
450
Melting Completion (Liquidus), °C 600
1460
Melting Onset (Solidus), °C 490
1420
Specific Heat Capacity, J/kg-K 990
470
Thermal Conductivity, W/m-K 76
40
Thermal Expansion, µm/m-K 26
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 59
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 12
3.1
Density, g/cm3 1.7
7.8
Embodied Carbon, kg CO2/kg material 22
1.9
Embodied Energy, MJ/kg 160
26
Embodied Water, L/kg 990
58

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.0 to 15
120
Resilience: Unit (Modulus of Resilience), kJ/m3 180 to 320
2790
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 69
24
Strength to Weight: Axial, points 31 to 43
43
Strength to Weight: Bending, points 43 to 53
32
Thermal Diffusivity, mm2/s 44
11
Thermal Shock Resistance, points 11 to 16
35

Alloy Composition

Aluminum (Al), % 8.3 to 9.7
0
Carbon (C), % 0
0.27 to 0.34
Chromium (Cr), % 0
2.3 to 2.7
Copper (Cu), % 0 to 0.030
0
Iron (Fe), % 0 to 0.0050
95.7 to 97.1
Magnesium (Mg), % 88.6 to 91.3
0
Manganese (Mn), % 0.1 to 0.5
0.4 to 0.7
Molybdenum (Mo), % 0
0.15 to 0.25
Nickel (Ni), % 0 to 0.0020
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.2
0 to 0.4
Sulfur (S), % 0
0 to 0.035
Vanadium (V), % 0
0.1 to 0.2
Zinc (Zn), % 0.35 to 1.0
0
Residuals, % 0 to 0.010
0