MakeItFrom.com
Menu (ESC)

EN-MC21120 Magnesium vs. Grade Ti-Pd16 Titanium

EN-MC21120 magnesium belongs to the magnesium alloys classification, while grade Ti-Pd16 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN-MC21120 magnesium and the bottom bar is grade Ti-Pd16 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 63 to 75
180
Elastic (Young's, Tensile) Modulus, GPa 46
110
Elongation at Break, % 2.2 to 6.7
17
Fatigue Strength, MPa 84 to 96
200
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 18
40
Tensile Strength: Ultimate (UTS), MPa 200 to 270
390
Tensile Strength: Yield (Proof), MPa 130 to 170
310

Thermal Properties

Latent Heat of Fusion, J/g 350
420
Maximum Temperature: Mechanical, °C 130
320
Melting Completion (Liquidus), °C 600
1660
Melting Onset (Solidus), °C 490
1610
Specific Heat Capacity, J/kg-K 990
540
Thermal Conductivity, W/m-K 76
22
Thermal Expansion, µm/m-K 26
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
3.6
Electrical Conductivity: Equal Weight (Specific), % IACS 59
7.1

Otherwise Unclassified Properties

Density, g/cm3 1.7
4.5
Embodied Carbon, kg CO2/kg material 22
36
Embodied Energy, MJ/kg 160
600
Embodied Water, L/kg 990
230

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.0 to 15
62
Resilience: Unit (Modulus of Resilience), kJ/m3 180 to 320
440
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 69
35
Strength to Weight: Axial, points 31 to 43
24
Strength to Weight: Bending, points 43 to 53
26
Thermal Diffusivity, mm2/s 44
8.9
Thermal Shock Resistance, points 11 to 16
30

Alloy Composition

Aluminum (Al), % 8.3 to 9.7
0
Carbon (C), % 0
0 to 0.1
Copper (Cu), % 0 to 0.030
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.0050
0 to 0.3
Magnesium (Mg), % 88.6 to 91.3
0
Manganese (Mn), % 0.1 to 0.5
0
Nickel (Ni), % 0 to 0.0020
0 to 0.030
Oxygen (O), % 0
0 to 0.18
Palladium (Pd), % 0
0.040 to 0.080
Silicon (Si), % 0 to 0.2
0
Titanium (Ti), % 0
98.8 to 99.96
Zinc (Zn), % 0.35 to 1.0
0
Residuals, % 0
0 to 0.4