MakeItFrom.com
Menu (ESC)

EN-MC21120 Magnesium vs. C31600 Bronze

EN-MC21120 magnesium belongs to the magnesium alloys classification, while C31600 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN-MC21120 magnesium and the bottom bar is C31600 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 46
110
Elongation at Break, % 2.2 to 6.7
6.7 to 28
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 18
42
Shear Strength, MPa 110 to 160
170 to 270
Tensile Strength: Ultimate (UTS), MPa 200 to 270
270 to 460
Tensile Strength: Yield (Proof), MPa 130 to 170
80 to 390

Thermal Properties

Latent Heat of Fusion, J/g 350
200
Maximum Temperature: Mechanical, °C 130
180
Melting Completion (Liquidus), °C 600
1040
Melting Onset (Solidus), °C 490
1010
Specific Heat Capacity, J/kg-K 990
380
Thermal Conductivity, W/m-K 76
140
Thermal Expansion, µm/m-K 26
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
32
Electrical Conductivity: Equal Weight (Specific), % IACS 59
33

Otherwise Unclassified Properties

Base Metal Price, % relative 12
29
Density, g/cm3 1.7
8.8
Embodied Carbon, kg CO2/kg material 22
2.7
Embodied Energy, MJ/kg 160
43
Embodied Water, L/kg 990
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.0 to 15
30 to 58
Resilience: Unit (Modulus of Resilience), kJ/m3 180 to 320
28 to 690
Stiffness to Weight: Axial, points 15
7.1
Stiffness to Weight: Bending, points 69
18
Strength to Weight: Axial, points 31 to 43
8.5 to 15
Strength to Weight: Bending, points 43 to 53
11 to 15
Thermal Diffusivity, mm2/s 44
42
Thermal Shock Resistance, points 11 to 16
9.4 to 16

Alloy Composition

Aluminum (Al), % 8.3 to 9.7
0
Copper (Cu), % 0 to 0.030
87.5 to 90.5
Iron (Fe), % 0 to 0.0050
0 to 0.1
Lead (Pb), % 0
1.3 to 2.5
Magnesium (Mg), % 88.6 to 91.3
0
Manganese (Mn), % 0.1 to 0.5
0
Nickel (Ni), % 0 to 0.0020
0.7 to 1.2
Phosphorus (P), % 0
0.040 to 0.1
Silicon (Si), % 0 to 0.2
0
Zinc (Zn), % 0.35 to 1.0
5.2 to 10.5
Residuals, % 0
0 to 0.4