MakeItFrom.com
Menu (ESC)

EN-MC21120 Magnesium vs. N10276 Nickel

EN-MC21120 magnesium belongs to the magnesium alloys classification, while N10276 nickel belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN-MC21120 magnesium and the bottom bar is N10276 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 46
220
Elongation at Break, % 2.2 to 6.7
47
Fatigue Strength, MPa 84 to 96
280
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 18
84
Shear Strength, MPa 110 to 160
550
Tensile Strength: Ultimate (UTS), MPa 200 to 270
780
Tensile Strength: Yield (Proof), MPa 130 to 170
320

Thermal Properties

Latent Heat of Fusion, J/g 350
320
Maximum Temperature: Mechanical, °C 130
960
Melting Completion (Liquidus), °C 600
1370
Melting Onset (Solidus), °C 490
1320
Specific Heat Capacity, J/kg-K 990
410
Thermal Conductivity, W/m-K 76
9.1
Thermal Expansion, µm/m-K 26
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 59
1.3

Otherwise Unclassified Properties

Base Metal Price, % relative 12
70
Density, g/cm3 1.7
9.1
Embodied Carbon, kg CO2/kg material 22
13
Embodied Energy, MJ/kg 160
170
Embodied Water, L/kg 990
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.0 to 15
300
Resilience: Unit (Modulus of Resilience), kJ/m3 180 to 320
230
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 69
22
Strength to Weight: Axial, points 31 to 43
24
Strength to Weight: Bending, points 43 to 53
21
Thermal Diffusivity, mm2/s 44
2.4
Thermal Shock Resistance, points 11 to 16
23

Alloy Composition

Aluminum (Al), % 8.3 to 9.7
0
Carbon (C), % 0
0 to 0.010
Chromium (Cr), % 0
14.5 to 16.5
Cobalt (Co), % 0
0 to 2.5
Copper (Cu), % 0 to 0.030
0
Iron (Fe), % 0 to 0.0050
4.0 to 7.0
Magnesium (Mg), % 88.6 to 91.3
0
Manganese (Mn), % 0.1 to 0.5
0 to 0.010
Molybdenum (Mo), % 0
15 to 17
Nickel (Ni), % 0 to 0.0020
51 to 63.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.2
0 to 0.080
Sulfur (S), % 0
0 to 0.030
Tungsten (W), % 0
3.0 to 4.5
Vanadium (V), % 0
0 to 0.35
Zinc (Zn), % 0.35 to 1.0
0
Residuals, % 0 to 0.010
0