MakeItFrom.com
Menu (ESC)

EN-MC21120 Magnesium vs. S30600 Stainless Steel

EN-MC21120 magnesium belongs to the magnesium alloys classification, while S30600 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN-MC21120 magnesium and the bottom bar is S30600 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 63 to 75
180
Elastic (Young's, Tensile) Modulus, GPa 46
190
Elongation at Break, % 2.2 to 6.7
45
Fatigue Strength, MPa 84 to 96
250
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 18
76
Shear Strength, MPa 110 to 160
430
Tensile Strength: Ultimate (UTS), MPa 200 to 270
610
Tensile Strength: Yield (Proof), MPa 130 to 170
270

Thermal Properties

Latent Heat of Fusion, J/g 350
350
Maximum Temperature: Mechanical, °C 130
950
Melting Completion (Liquidus), °C 600
1380
Melting Onset (Solidus), °C 490
1330
Specific Heat Capacity, J/kg-K 990
490
Thermal Conductivity, W/m-K 76
14
Thermal Expansion, µm/m-K 26
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 59
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 12
19
Density, g/cm3 1.7
7.6
Embodied Carbon, kg CO2/kg material 22
3.6
Embodied Energy, MJ/kg 160
51
Embodied Water, L/kg 990
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.0 to 15
220
Resilience: Unit (Modulus of Resilience), kJ/m3 180 to 320
190
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 69
25
Strength to Weight: Axial, points 31 to 43
22
Strength to Weight: Bending, points 43 to 53
21
Thermal Diffusivity, mm2/s 44
3.7
Thermal Shock Resistance, points 11 to 16
14

Alloy Composition

Aluminum (Al), % 8.3 to 9.7
0
Carbon (C), % 0
0 to 0.018
Chromium (Cr), % 0
17 to 18.5
Copper (Cu), % 0 to 0.030
0 to 0.5
Iron (Fe), % 0 to 0.0050
58.9 to 65.3
Magnesium (Mg), % 88.6 to 91.3
0
Manganese (Mn), % 0.1 to 0.5
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.2
Nickel (Ni), % 0 to 0.0020
14 to 15.5
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.2
3.7 to 4.3
Sulfur (S), % 0
0 to 0.020
Zinc (Zn), % 0.35 to 1.0
0
Residuals, % 0 to 0.010
0