MakeItFrom.com
Menu (ESC)

EN-MC21120 Magnesium vs. S41425 Stainless Steel

EN-MC21120 magnesium belongs to the magnesium alloys classification, while S41425 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN-MC21120 magnesium and the bottom bar is S41425 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 63 to 75
280
Elastic (Young's, Tensile) Modulus, GPa 46
200
Elongation at Break, % 2.2 to 6.7
17
Fatigue Strength, MPa 84 to 96
450
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 18
77
Shear Strength, MPa 110 to 160
570
Tensile Strength: Ultimate (UTS), MPa 200 to 270
920
Tensile Strength: Yield (Proof), MPa 130 to 170
750

Thermal Properties

Latent Heat of Fusion, J/g 350
280
Maximum Temperature: Mechanical, °C 130
810
Melting Completion (Liquidus), °C 600
1450
Melting Onset (Solidus), °C 490
1410
Specific Heat Capacity, J/kg-K 990
470
Thermal Conductivity, W/m-K 76
16
Thermal Expansion, µm/m-K 26
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 59
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 12
13
Density, g/cm3 1.7
7.9
Embodied Carbon, kg CO2/kg material 22
2.9
Embodied Energy, MJ/kg 160
40
Embodied Water, L/kg 990
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.0 to 15
150
Resilience: Unit (Modulus of Resilience), kJ/m3 180 to 320
1420
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 69
25
Strength to Weight: Axial, points 31 to 43
33
Strength to Weight: Bending, points 43 to 53
27
Thermal Diffusivity, mm2/s 44
4.4
Thermal Shock Resistance, points 11 to 16
33

Alloy Composition

Aluminum (Al), % 8.3 to 9.7
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
12 to 15
Copper (Cu), % 0 to 0.030
0 to 0.3
Iron (Fe), % 0 to 0.0050
74 to 81.9
Magnesium (Mg), % 88.6 to 91.3
0
Manganese (Mn), % 0.1 to 0.5
0.5 to 1.0
Molybdenum (Mo), % 0
1.5 to 2.0
Nickel (Ni), % 0 to 0.0020
4.0 to 7.0
Nitrogen (N), % 0
0.060 to 0.12
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.2
0 to 0.5
Sulfur (S), % 0
0 to 0.0050
Zinc (Zn), % 0.35 to 1.0
0
Residuals, % 0 to 0.010
0