MakeItFrom.com
Menu (ESC)

EN-MC21210 Magnesium vs. AISI 317LMN Stainless Steel

EN-MC21210 magnesium belongs to the magnesium alloys classification, while AISI 317LMN stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN-MC21210 magnesium and the bottom bar is AISI 317LMN stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 48
190
Elastic (Young's, Tensile) Modulus, GPa 44
200
Elongation at Break, % 14
45
Fatigue Strength, MPa 70
250
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 17
79
Shear Strength, MPa 110
430
Tensile Strength: Ultimate (UTS), MPa 190
620
Tensile Strength: Yield (Proof), MPa 90
270

Thermal Properties

Latent Heat of Fusion, J/g 350
290
Maximum Temperature: Mechanical, °C 100
1020
Melting Completion (Liquidus), °C 600
1460
Melting Onset (Solidus), °C 570
1410
Specific Heat Capacity, J/kg-K 1000
470
Thermal Conductivity, W/m-K 120
14
Thermal Expansion, µm/m-K 27
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 24
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 130
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 12
24
Density, g/cm3 1.6
8.0
Embodied Carbon, kg CO2/kg material 24
4.8
Embodied Energy, MJ/kg 160
65
Embodied Water, L/kg 980
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 22
230
Resilience: Unit (Modulus of Resilience), kJ/m3 92
180
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 72
25
Strength to Weight: Axial, points 32
22
Strength to Weight: Bending, points 44
20
Thermal Diffusivity, mm2/s 76
3.8
Thermal Shock Resistance, points 11
14

Alloy Composition

Aluminum (Al), % 1.6 to 2.6
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
17 to 20
Copper (Cu), % 0 to 0.010
0
Iron (Fe), % 0 to 0.0050
54.4 to 65.4
Magnesium (Mg), % 96.3 to 98.3
0
Manganese (Mn), % 0.1 to 0.7
0 to 2.0
Molybdenum (Mo), % 0
4.0 to 5.0
Nickel (Ni), % 0 to 0.0020
13.5 to 17.5
Nitrogen (N), % 0
0.1 to 0.2
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.1
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.010
0