MakeItFrom.com
Menu (ESC)

EN-MC21210 Magnesium vs. ASTM A387 Grade 5 Steel

EN-MC21210 magnesium belongs to the magnesium alloys classification, while ASTM A387 grade 5 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN-MC21210 magnesium and the bottom bar is ASTM A387 grade 5 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 48
150 to 180
Elastic (Young's, Tensile) Modulus, GPa 44
190
Elongation at Break, % 14
20 to 21
Fatigue Strength, MPa 70
160 to 240
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 17
74
Shear Strength, MPa 110
310 to 380
Tensile Strength: Ultimate (UTS), MPa 190
500 to 600
Tensile Strength: Yield (Proof), MPa 90
230 to 350

Thermal Properties

Latent Heat of Fusion, J/g 350
260
Maximum Temperature: Mechanical, °C 100
510
Melting Completion (Liquidus), °C 600
1460
Melting Onset (Solidus), °C 570
1420
Specific Heat Capacity, J/kg-K 1000
470
Thermal Conductivity, W/m-K 120
40
Thermal Expansion, µm/m-K 27
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 24
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 130
9.2

Otherwise Unclassified Properties

Base Metal Price, % relative 12
4.3
Density, g/cm3 1.6
7.8
Embodied Carbon, kg CO2/kg material 24
1.7
Embodied Energy, MJ/kg 160
23
Embodied Water, L/kg 980
69

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 22
83 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 92
140 to 320
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 72
25
Strength to Weight: Axial, points 32
18 to 21
Strength to Weight: Bending, points 44
18 to 20
Thermal Diffusivity, mm2/s 76
11
Thermal Shock Resistance, points 11
14 to 17

Alloy Composition

Aluminum (Al), % 1.6 to 2.6
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
4.0 to 6.0
Copper (Cu), % 0 to 0.010
0
Iron (Fe), % 0 to 0.0050
92.1 to 95.3
Magnesium (Mg), % 96.3 to 98.3
0
Manganese (Mn), % 0.1 to 0.7
0.3 to 0.6
Molybdenum (Mo), % 0
0.45 to 0.65
Nickel (Ni), % 0 to 0.0020
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.1
0 to 0.5
Sulfur (S), % 0
0 to 0.025
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.010
0